环氧化物水解酶2
肌肉肥大
同型半胱氨酸
环氧化物水解酶
化学
内科学
心肌肥大
内分泌学
医学
生物化学
酶
微粒体
作者
Yang Zhou,Xiang-Chong Wang,Jiahui Wei,Hongmei Xue,Wentao Sun,Guo‐Wei He,Qin Yang
标识
DOI:10.1016/j.bbadis.2023.166643
摘要
Studies in certain cardiac hypertrophy models suggested the individual role of soluble epoxide hydrolase (sEH) and canonical transient receptor potential 3 (TRPC3) channels, however, whether they jointly mediate hypertrophic process remains unexplored. Hyperhomocysteinemia promotes cardiac hypertrophy while the involvement of sEH and TRPC3 channels remains unknown. This study aimed to explore the role of, and interrelation between sEH and TRPC3 channels in homocysteine-induced cardiac hypertrophy. Rats were fed methionine-enriched diet to induce hyperhomocysteinemia. H9c2 cells and neonatal rat cardiomyocytes were incubated with homocysteine. Cardiac hypertrophy was evaluated by echocardiography, histological examination, immunofluorescence imaging, and expressions of hypertrophic markers. Epoxyeicosatrienoic acids (EETs) were determined by ELISA. TRPC3 current was recorded by patch-clamp. Gene promotor activity was measured using dual-luciferase reporter assay. Inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) reduced ventricular mass, lowered the expression of hypertrophic markers, decreased interstitial collagen deposition, and improved cardiac function in hyperhomocysteinemic rats, associated with restoration of EETs levels in myocardium. TPPU or knockdown of sEH suppressed TRPC3 transcription and translation as well as TRPC3 current that were enhanced by homocysteine. Exogenous 11,12-EET inhibited homocysteine-induced TRPC3 expression and cellular hypertrophy. Silencing C/EBPβ attenuated, while overexpressing C/EBPβ promoted homocysteine-induced hypertrophy and expressions of sEH and TRPC3, resulting respectively from inhibition or activation of sEH and TRPC3 gene promoters. sEH and TRPC3 channels jointly contribute to homocysteine-induced cardiac hypertrophy. Homocysteine transcriptionally activates sEH and TRPC3 genes through a common regulatory element C/EBPβ. sEH activation leads to an upregulation of TRPC3 channels via a 11,12-EET-dependent manner.
科研通智能强力驱动
Strongly Powered by AbleSci AI