Development of an MRI‐Based Comprehensive Model Fusing Clinical, Radiomics and Deep Learning Models for Preoperative Histological Stratification in Intracranial Solitary Fibrous Tumor

医学 磁共振成像 精确检验 队列 放射科 核医学 接收机工作特性 卡帕 快速自旋回波 科恩卡帕 机器学习 外科 内科学 计算机科学 数学 几何学
作者
Xiaohong Liang,Kaiqiang Tang,Xiaoai Ke,Jian Jiang,Shenglin Li,Caiqiang Xue,Juan Deng,Xianwang Liu,Cheng Yan,Mingzi Gao,Junlin Zhou,Liqin Zhao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (2): 523-533 被引量:1
标识
DOI:10.1002/jmri.29098
摘要

Background Accurate preoperative histological stratification (HS) of intracranial solitary fibrous tumors (ISFTs) can help predict patient outcomes and develop personalized treatment plans. However, the role of a comprehensive model based on clinical, radiomics and deep learning (CRDL) features in preoperative HS of ISFT remains unclear. Purpose To investigate the feasibility of a CRDL model based on magnetic resonance imaging (MRI) in preoperative HS in ISFT. Study Type Retrospective. Population Three hundred and ninety‐eight patients from Beijing Tiantan Hospital, Capital Medical University (primary training cohort) and 49 patients from Lanzhou University Second Hospital (external validation cohort) with ISFT based on histopathological findings (237 World Health Organization [WHO] tumor grade 1 or 2, and 210 WHO tumor grade 3). Field Strength/Sequence 3.0 T/T1‐weighted imaging (T1) by using spin echo sequence, T2‐weighted imaging (T2) by using fast spin echo sequence, and T1‐weighted contrast‐enhanced imaging (T1C) by using two‐dimensional fast spin echo sequence. Assessment Area under the receiver operating characteristic curve (AUC) was used to assess the performance of the CRDL model and a clinical model (CM) in preoperative HS in the external validation cohort. The decision curve analysis (DCA) was used to evaluate the clinical net benefit provided by the CRDL model. Statistical Tests Cohen's kappa, intra‐/inter‐class correlation coefficients (ICCs), Chi‐square test, Fisher's exact test, Student's t ‐test, AUC, DCA, calibration curves, DeLong test. A P value <0.05 was considered statistically significant. Results The CRDL model had significantly better discrimination ability than the CM (AUC [95% confidence interval, CI]: 0.895 [0.807–0.912] vs. 0.810 [0.745–0.874], respectively) in the external validation cohort. The CRDL model can provide a clinical net benefit for preoperative HS at a threshold probability >20%. Data Conclusion The proposed CRDL model holds promise for preoperative HS in ISFT, which is important for predicting patient outcomes and developing personalized treatment plans. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灿灿完成签到 ,获得积分10
刚刚
刚刚
HJM完成签到,获得积分20
刚刚
1秒前
黑煤球完成签到,获得积分20
1秒前
1秒前
黄瑾完成签到,获得积分10
1秒前
激动的士萧完成签到,获得积分10
1秒前
于瑜与余完成签到,获得积分10
2秒前
文献嘤发布了新的文献求助10
2秒前
英俊的铭应助568675467采纳,获得10
2秒前
所所应助568675467采纳,获得10
3秒前
3秒前
17835152738完成签到,获得积分10
3秒前
Seven发布了新的文献求助10
4秒前
lallallallall发布了新的文献求助10
4秒前
润泽无语完成签到,获得积分10
4秒前
Star完成签到 ,获得积分10
4秒前
5秒前
5秒前
节节高发布了新的文献求助10
5秒前
连长发布了新的文献求助10
5秒前
赘婿应助dd采纳,获得10
5秒前
仁爱觅风完成签到,获得积分10
5秒前
XiaoDai完成签到 ,获得积分10
5秒前
喜屿完成签到 ,获得积分10
6秒前
Ryann发布了新的文献求助10
6秒前
于瑜与余发布了新的文献求助10
6秒前
6秒前
Hello应助可以的采纳,获得10
7秒前
土行孙完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
柳柳发布了新的文献求助30
7秒前
aa完成签到,获得积分10
8秒前
8秒前
等待香寒完成签到 ,获得积分10
9秒前
来自3602完成签到,获得积分10
9秒前
dqh发布了新的文献求助10
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151290
求助须知:如何正确求助?哪些是违规求助? 2802726
关于积分的说明 7850119
捐赠科研通 2460164
什么是DOI,文献DOI怎么找? 1309586
科研通“疑难数据库(出版商)”最低求助积分说明 628975
版权声明 601760