Development of an MRI‐Based Comprehensive Model Fusing Clinical, Radiomics and Deep Learning Models for Preoperative Histological Stratification in Intracranial Solitary Fibrous Tumor

医学 磁共振成像 精确检验 队列 放射科 核医学 接收机工作特性 卡帕 快速自旋回波 科恩卡帕 机器学习 外科 内科学 计算机科学 数学 几何学
作者
Xiaohong Liang,Kaiqiang Tang,Xiaoai Ke,Jian Jiang,Shenglin Li,Caiqiang Xue,Juan Deng,Xianwang Liu,Cheng Yan,Mingzi Gao,Junlin Zhou,Liqin Zhao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:60 (2): 523-533 被引量:4
标识
DOI:10.1002/jmri.29098
摘要

Background Accurate preoperative histological stratification (HS) of intracranial solitary fibrous tumors (ISFTs) can help predict patient outcomes and develop personalized treatment plans. However, the role of a comprehensive model based on clinical, radiomics and deep learning (CRDL) features in preoperative HS of ISFT remains unclear. Purpose To investigate the feasibility of a CRDL model based on magnetic resonance imaging (MRI) in preoperative HS in ISFT. Study Type Retrospective. Population Three hundred and ninety‐eight patients from Beijing Tiantan Hospital, Capital Medical University (primary training cohort) and 49 patients from Lanzhou University Second Hospital (external validation cohort) with ISFT based on histopathological findings (237 World Health Organization [WHO] tumor grade 1 or 2, and 210 WHO tumor grade 3). Field Strength/Sequence 3.0 T/T1‐weighted imaging (T1) by using spin echo sequence, T2‐weighted imaging (T2) by using fast spin echo sequence, and T1‐weighted contrast‐enhanced imaging (T1C) by using two‐dimensional fast spin echo sequence. Assessment Area under the receiver operating characteristic curve (AUC) was used to assess the performance of the CRDL model and a clinical model (CM) in preoperative HS in the external validation cohort. The decision curve analysis (DCA) was used to evaluate the clinical net benefit provided by the CRDL model. Statistical Tests Cohen's kappa, intra‐/inter‐class correlation coefficients (ICCs), Chi‐square test, Fisher's exact test, Student's t ‐test, AUC, DCA, calibration curves, DeLong test. A P value <0.05 was considered statistically significant. Results The CRDL model had significantly better discrimination ability than the CM (AUC [95% confidence interval, CI]: 0.895 [0.807–0.912] vs. 0.810 [0.745–0.874], respectively) in the external validation cohort. The CRDL model can provide a clinical net benefit for preoperative HS at a threshold probability >20%. Data Conclusion The proposed CRDL model holds promise for preoperative HS in ISFT, which is important for predicting patient outcomes and developing personalized treatment plans. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助laodie采纳,获得10
刚刚
Singularity应助忆楠采纳,获得10
1秒前
2秒前
请叫我风吹麦浪应助PengHu采纳,获得30
3秒前
jjjjjj完成签到,获得积分10
3秒前
凝子老师发布了新的文献求助10
5秒前
5秒前
橙子fy16_发布了新的文献求助10
7秒前
cookie完成签到,获得积分10
7秒前
柒柒的小熊完成签到,获得积分10
8秒前
8秒前
Hello应助萌之痴痴采纳,获得10
9秒前
hahaer完成签到,获得积分10
11秒前
领导范儿应助失眠虔纹采纳,获得10
12秒前
13秒前
Owen应助凝子老师采纳,获得10
16秒前
16秒前
南宫炽滔完成签到 ,获得积分10
18秒前
18秒前
丘比特应助飞羽采纳,获得10
19秒前
沙拉发布了新的文献求助10
19秒前
20秒前
21秒前
椰子糖完成签到 ,获得积分10
22秒前
22秒前
ZHU完成签到,获得积分10
23秒前
阳阳发布了新的文献求助10
24秒前
Raymond应助雪山飞龙采纳,获得10
24秒前
kk发布了新的文献求助10
25秒前
25秒前
26秒前
26秒前
26秒前
27秒前
30秒前
果果瑞宁发布了新的文献求助10
30秒前
wewewew发布了新的文献求助10
30秒前
30秒前
打打应助沙拉采纳,获得10
30秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849