Poultry fecal imagery dataset for health status prediction: A case of South-West Nigeria

家禽养殖 计算机科学 预处理器 分割 人工智能 业务 兽医学 医学
作者
Halleluyah Oluwatobi Aworinde,Segun Adebayo,Akinwale O. Akinwunmi,O. Alabi,A. Ayandiji,Aderonke Busayo Sakpere,Abel Kolawole Oyebamiji,Oke Olaide,Ezenma Kizito,Abayomi J. Olawuyi
出处
期刊:Data in Brief [Elsevier]
卷期号:50: 109517-109517 被引量:6
标识
DOI:10.1016/j.dib.2023.109517
摘要

Feces is one quick way to determine the health status of the birds and farmers rely on years of experience as well as professionals to identify and diagnose poultry diseases. Most often, farmers lose their flocks as a result of delayed diagnosis or a lack of trustworthy experts. Prevalent diseases affecting poultry birds may be quickly noticed from image of poultry bird's droppings using artificial intelligence based on computer vision and image analysis. This paper provides description of a dataset of both healthy and unhealthy poultry fecal imagery captured from selected poultry farms in south-west of Nigeria using smartphone camera. The dataset was collected at different times of the day to account for variability in light intensity and can be applied in machine learning models development for abnormality detection in poultry farms. The dataset collected is 19,155 images; however, after preprocessing which encompasses cleaning, segmentation and removal of duplicates, the data strength is 14,618 labeled images. Each image is 100 by 100 pixels size in jpeg format. Additionally, computer vision applications like picture segmentation, object detection, and classification can be supported by the dataset. This dataset's creation is intended to aid in the creation of comprehensive tools that will aid farmers and agricultural extension agents in managing poultry farms in an effort to minimize loss and, as a result, optimize profit as well as the sustainability of protein sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rainlwang完成签到,获得积分10
刚刚
刚刚
李爱国应助leaf采纳,获得10
1秒前
yy发布了新的文献求助10
1秒前
XIGUA发布了新的文献求助10
1秒前
2秒前
aka发布了新的文献求助40
2秒前
chen1999完成签到,获得积分10
2秒前
2秒前
rainlwang发布了新的文献求助20
4秒前
Keqi完成签到,获得积分10
4秒前
图里琛完成签到 ,获得积分10
5秒前
yyymmma发布了新的文献求助10
6秒前
Nemo完成签到,获得积分10
6秒前
6秒前
帽帽完成签到 ,获得积分10
6秒前
7秒前
cha236发布了新的文献求助10
7秒前
7秒前
VeT完成签到,获得积分10
9秒前
neufy发布了新的文献求助10
9秒前
moumou完成签到,获得积分10
9秒前
10秒前
10秒前
快乐的幼丝完成签到 ,获得积分10
10秒前
完美夏天发布了新的文献求助10
10秒前
huang发布了新的文献求助10
11秒前
11秒前
11秒前
sss完成签到,获得积分10
11秒前
无花果应助liuxuwei采纳,获得10
12秒前
搜集达人应助林一采纳,获得10
12秒前
Zoe完成签到,获得积分10
12秒前
aaaaa发布了新的文献求助10
13秒前
cha236完成签到,获得积分10
13秒前
13秒前
李大园子完成签到 ,获得积分10
14秒前
14秒前
Dodobirdzhb完成签到,获得积分10
15秒前
汤mou发布了新的文献求助10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227031
求助须知:如何正确求助?哪些是违规求助? 2875202
关于积分的说明 8189900
捐赠科研通 2542434
什么是DOI,文献DOI怎么找? 1372722
科研通“疑难数据库(出版商)”最低求助积分说明 646537
邀请新用户注册赠送积分活动 620956