家禽养殖
计算机科学
预处理器
分割
人工智能
业务
兽医学
医学
作者
Halleluyah Oluwatobi Aworinde,Segun Adebayo,Akinwale O. Akinwunmi,O. Alabi,A. Ayandiji,Aderonke Busayo Sakpere,Abel Kolawole Oyebamiji,Oke Olaide,Ezenma Kizito,Abayomi J. Olawuyi
出处
期刊:Data in Brief
[Elsevier]
日期:2023-08-23
卷期号:50: 109517-109517
被引量:6
标识
DOI:10.1016/j.dib.2023.109517
摘要
Feces is one quick way to determine the health status of the birds and farmers rely on years of experience as well as professionals to identify and diagnose poultry diseases. Most often, farmers lose their flocks as a result of delayed diagnosis or a lack of trustworthy experts. Prevalent diseases affecting poultry birds may be quickly noticed from image of poultry bird's droppings using artificial intelligence based on computer vision and image analysis. This paper provides description of a dataset of both healthy and unhealthy poultry fecal imagery captured from selected poultry farms in south-west of Nigeria using smartphone camera. The dataset was collected at different times of the day to account for variability in light intensity and can be applied in machine learning models development for abnormality detection in poultry farms. The dataset collected is 19,155 images; however, after preprocessing which encompasses cleaning, segmentation and removal of duplicates, the data strength is 14,618 labeled images. Each image is 100 by 100 pixels size in jpeg format. Additionally, computer vision applications like picture segmentation, object detection, and classification can be supported by the dataset. This dataset's creation is intended to aid in the creation of comprehensive tools that will aid farmers and agricultural extension agents in managing poultry farms in an effort to minimize loss and, as a result, optimize profit as well as the sustainability of protein sources.
科研通智能强力驱动
Strongly Powered by AbleSci AI