PoseFormerV2: Exploring Frequency Domain for Efficient and Robust 3D Human Pose Estimation

计算机科学 稳健性(进化) 频域 变压器 人工智能 利用 水准点(测量) 接头(建筑物) 模式识别(心理学) 计算机视觉 工程类 建筑工程 生物化学 化学 计算机安全 大地测量学 电压 地理 电气工程 基因
作者
Qian Zhao,Chuansheng Zheng,Mengyuan Liu,Pichao Wang,Chen Chen
标识
DOI:10.1109/cvpr52729.2023.00857
摘要

Recently, transformer-based methods have gained significant success in sequential 2D-to-3D lifting human pose estimation. As a pioneering work, PoseFormer captures spatial relations of human joints in each video frame and human dynamics across frames with cascaded transformer layers and has achieved impressive performance. However, in real scenarios, the performance of PoseFormer and its follow-ups is limited by two factors: (a) The length of the input joint sequence; (b) The quality of 2D joint detection. Existing methods typically apply self-attention to all frames of the input sequence, causing a huge computational burden when the frame number is increased to obtain advanced estimation accuracy, and they are not robust to noise naturally brought by the limited capability of 2D joint detectors. In this paper, we propose PoseFormerV2, which exploits a compact representation of lengthy skeleton sequences in the frequency domain to efficiently scale up the receptive field and boost robustness to noisy 2D joint detection. With minimum modifications to PoseFormer, the proposed method effectively fuses features both in the time domain and frequency domain, enjoying a better speed-accuracy trade-off than its precursor. Extensive experiments on two benchmark datasets (i.e., Human3.6M and MPI-INF-3DHP) demonstrate that the proposed approach significantly outperforms the original PoseFormer and other transformer-based variants. Code is released at https://github.com/ QitaoZhao/PoseFormerV2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助six采纳,获得10
2秒前
lijingwen发布了新的文献求助10
2秒前
Adel发布了新的文献求助10
2秒前
4秒前
大蜥蜴完成签到,获得积分10
4秒前
4秒前
5秒前
Clover04应助爽_采纳,获得10
5秒前
oceanao应助圆圆酱采纳,获得10
6秒前
重要的平灵完成签到 ,获得积分10
6秒前
112233发布了新的文献求助90
6秒前
哈哈恬完成签到,获得积分10
7秒前
善学以致用应助gzsy采纳,获得10
7秒前
Xiaohu完成签到,获得积分10
7秒前
研友_VZG7GZ应助N1koooooo采纳,获得10
8秒前
顺心的惜蕊完成签到 ,获得积分10
8秒前
打打应助Mytheye采纳,获得10
8秒前
duwang完成签到,获得积分10
9秒前
陈陈发布了新的文献求助10
9秒前
Jasper应助加油采纳,获得10
9秒前
活泼雪旋发布了新的文献求助10
10秒前
skyer1完成签到,获得积分10
11秒前
小慈爱鸡完成签到 ,获得积分10
11秒前
11秒前
yhh完成签到,获得积分10
11秒前
赘婿应助tutuutut采纳,获得10
11秒前
西北大灰狼完成签到,获得积分10
11秒前
斯文败类应助孝顺的友菱采纳,获得10
11秒前
12秒前
Zoeytam完成签到,获得积分10
12秒前
青枣不甜完成签到,获得积分10
13秒前
ww完成签到,获得积分10
13秒前
善良的沛山完成签到,获得积分20
13秒前
13秒前
哈哈哈哈完成签到,获得积分10
13秒前
hhh1完成签到,获得积分10
14秒前
aaaa完成签到,获得积分10
14秒前
loski完成签到,获得积分10
16秒前
英俊的铭应助俭朴的半雪采纳,获得10
16秒前
wanci应助haoooooooooooooo采纳,获得10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167902
求助须知:如何正确求助?哪些是违规求助? 2819288
关于积分的说明 7925910
捐赠科研通 2479167
什么是DOI,文献DOI怎么找? 1320660
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443