Caenorhabditis elegans as an in vivo model for the identification of natural antioxidants with anti-aging actions

秀丽隐杆线虫 模式生物 氧化应激 抗氧化剂 体内 生物 计算生物学 疾病 医学 生物化学 基因 遗传学 病理
作者
Yugui Lin,Chunxiu Lin,Yong Cao,Yunjiao Chen
出处
期刊:Biomedicine & Pharmacotherapy [Elsevier]
卷期号:167: 115594-115594 被引量:11
标识
DOI:10.1016/j.biopha.2023.115594
摘要

Natural antioxidants have recently emerged as a highly exciting and significant topic in anti-aging research. Diverse organism models present a viable protocol for future research. Notably, many breakthroughs on natural antioxidants have been achieved in the nematode Caenorhabditis elegans, an animal model frequently utilized for the study of aging research and anti-aging drugs in vivo. Due to the conservation of signaling pathways on oxidative stress resistance, lifespan regulation, and aging disease between C. elegans and multiple high-level organisms (humans), as well as the low and controllable cost of time and labor, it gradually develops into a trustworthy in vivo model for high-throughput screening and validation of natural antioxidants with anti-aging actions. First, information and models on free radicals and aging are presented in this review. We also describe indexes, detection methods, and molecular mechanisms for studying the in vivo antioxidant and anti-aging effects of natural antioxidants using C. elegans. It includes lifespan, physiological aging processes, oxidative stress levels, antioxidant enzyme activation, and anti-aging pathways. Furthermore, oxidative stress and healthspan improvement induced by natural antioxidants in humans and C. elegans are compared, to understand the potential and limitations of the screening model in preclinical studies. Finally, we emphasize that C. elegans is a useful model for exploring more natural antioxidant resources and uncovering the mechanisms underlying aging-related risk factors and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小金骑士发布了新的文献求助10
1秒前
青衣北风完成签到,获得积分10
2秒前
可爱的函函应助ppp采纳,获得10
2秒前
万俟发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
zxxx完成签到,获得积分10
6秒前
青苔发布了新的文献求助10
6秒前
HJM发布了新的文献求助10
7秒前
7秒前
7秒前
秋兰碧萱完成签到,获得积分10
7秒前
8秒前
8秒前
yu发布了新的文献求助10
8秒前
拾壹发布了新的文献求助10
8秒前
活泼火水发布了新的文献求助10
9秒前
jxt2023完成签到,获得积分10
9秒前
田様应助怕孤独的如凡采纳,获得10
9秒前
9秒前
ds发布了新的文献求助10
10秒前
10秒前
SMG发布了新的文献求助10
10秒前
Jasper应助paopao采纳,获得10
10秒前
风再起时发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
11秒前
肖肖发布了新的文献求助10
12秒前
MOMO完成签到,获得积分10
12秒前
领导范儿应助秋兰碧萱采纳,获得10
12秒前
zkf完成签到,获得积分10
13秒前
13秒前
11完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124949
求助须知:如何正确求助?哪些是违规求助? 2775300
关于积分的说明 7726177
捐赠科研通 2430793
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600328