已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Deep Learning Denoising Enhances Image Quality and Lowers Radiation Exposure in Interventional Bronchial Artery Embolization Cone Beam CT

锥束ct 医学 图像质量 锥束ct 栓塞 核医学 支气管动脉 放射科 降噪 材料科学 人工智能 计算机科学 计算机断层摄影术 图像(数学)
作者
Andreas S. Brendlin,Reza Dehdab,Benedikt Stenzl,J Mueck,Patrick Ghibes,Gerd Groezinger,Jonghyo Kim,Saif Afat,Christoph Schabel
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (5): 2144-2155
标识
DOI:10.1016/j.acra.2023.11.003
摘要

Objectives In interventional bronchial artery embolization (BAE), periprocedural cone beam CT (CBCT) improves guiding and localization. However, a trade-off exists between 6-second runs (high radiation dose and motion artifacts, but low noise) and 3-second runs (vice versa). This study aimed to determine the efficacy of an advanced deep learning denoising (DLD) technique in mitigating the trade-offs related to radiation dose and image quality during interventional BAE CBCT. Materials and Methods This study included BMI-matched patients undergoing 6-second and 3-second BAE CBCT scans. The dose-area product values (DAP) were obtained. All datasets were reconstructed using standard weighted filtered back projection (OR) and a novel DLD software. Objective image metrics were derived from place-consistent regions of interest, including CT numbers of the Aorta and lung, noise, and contrast-to-noise ratio. Three blinded radiologists performed subjective assessments regarding image quality, sharpness, contrast, and motion artifacts on all dataset combinations in a forced-choice setup (−1 = inferior, 0 = equal; 1 = superior). The points were averaged per item for a total score. Statistical analysis ensued using a properly corrected mixed-effects model with post hoc pairwise comparisons. Results Sixty patients were assessed in 30 matched pairs (age 64 ± 15 years; 10 female). The mean DAP for the 6 s and 3 s runs was 2199 ± 185 µGym² and 1227 ± 90 µGym², respectively. Neither low-dose imaging nor the reconstruction method introduced a significant HU shift (p ≥ 0.127). The 3 s-DLD presented the least noise and superior contrast-to-noise ratio (CNR) (p < 0.001). While subjective evaluation revealed no noticeable distinction between 6 s-DLD and 3 s-DLD in terms of quality (p ≥ 0.996), both outperformed the OR variants (p < 0.001). The 3 s datasets exhibited fewer motion artifacts than the 6 s datasets (p < 0.001). Conclusions DLD effectively mitigates the trade-off between radiation dose, image noise, and motion artifact burden in regular reconstructed BAE CBCT by enabling diagnostic scans with low radiation exposure and inherently low motion artifact burden at short examination times. In interventional bronchial artery embolization (BAE), periprocedural cone beam CT (CBCT) improves guiding and localization. However, a trade-off exists between 6-second runs (high radiation dose and motion artifacts, but low noise) and 3-second runs (vice versa). This study aimed to determine the efficacy of an advanced deep learning denoising (DLD) technique in mitigating the trade-offs related to radiation dose and image quality during interventional BAE CBCT. This study included BMI-matched patients undergoing 6-second and 3-second BAE CBCT scans. The dose-area product values (DAP) were obtained. All datasets were reconstructed using standard weighted filtered back projection (OR) and a novel DLD software. Objective image metrics were derived from place-consistent regions of interest, including CT numbers of the Aorta and lung, noise, and contrast-to-noise ratio. Three blinded radiologists performed subjective assessments regarding image quality, sharpness, contrast, and motion artifacts on all dataset combinations in a forced-choice setup (−1 = inferior, 0 = equal; 1 = superior). The points were averaged per item for a total score. Statistical analysis ensued using a properly corrected mixed-effects model with post hoc pairwise comparisons. Sixty patients were assessed in 30 matched pairs (age 64 ± 15 years; 10 female). The mean DAP for the 6 s and 3 s runs was 2199 ± 185 µGym² and 1227 ± 90 µGym², respectively. Neither low-dose imaging nor the reconstruction method introduced a significant HU shift (p ≥ 0.127). The 3 s-DLD presented the least noise and superior contrast-to-noise ratio (CNR) (p < 0.001). While subjective evaluation revealed no noticeable distinction between 6 s-DLD and 3 s-DLD in terms of quality (p ≥ 0.996), both outperformed the OR variants (p < 0.001). The 3 s datasets exhibited fewer motion artifacts than the 6 s datasets (p < 0.001). DLD effectively mitigates the trade-off between radiation dose, image noise, and motion artifact burden in regular reconstructed BAE CBCT by enabling diagnostic scans with low radiation exposure and inherently low motion artifact burden at short examination times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky完成签到 ,获得积分10
2秒前
KimJongUn完成签到,获得积分10
3秒前
情怀应助默默的冬菱采纳,获得10
5秒前
Tumumu完成签到,获得积分10
5秒前
隐形曼青应助沐晴采纳,获得10
6秒前
粽子完成签到,获得积分10
6秒前
6秒前
7秒前
懵懂的半蕾完成签到 ,获得积分10
8秒前
严珍珍完成签到 ,获得积分10
9秒前
9秒前
粽子发布了新的文献求助100
10秒前
寻道图强完成签到,获得积分0
10秒前
11秒前
云上人完成签到 ,获得积分10
11秒前
13秒前
剑八发布了新的文献求助10
15秒前
jj关注了科研通微信公众号
16秒前
16秒前
derrickZ发布了新的文献求助10
19秒前
无限的高烽完成签到,获得积分10
21秒前
22秒前
领导范儿应助剑八采纳,获得10
23秒前
小王发布了新的文献求助10
26秒前
北极星完成签到,获得积分10
26秒前
Sonia发布了新的文献求助10
27秒前
嘤嘤发布了新的文献求助20
28秒前
StephenLuffy完成签到,获得积分10
28秒前
FengYun完成签到 ,获得积分0
31秒前
剑八完成签到,获得积分10
35秒前
小点点完成签到,获得积分10
35秒前
XIAO完成签到,获得积分10
37秒前
39秒前
JamesPei应助一一一一一采纳,获得10
39秒前
40秒前
DandanHan0916完成签到 ,获得积分10
44秒前
大肥毛毛球完成签到 ,获得积分10
44秒前
蝈蝈蝈完成签到 ,获得积分10
45秒前
47秒前
47秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056391
求助须知:如何正确求助?哪些是违规求助? 2713013
关于积分的说明 7434137
捐赠科研通 2357966
什么是DOI,文献DOI怎么找? 1249173
科研通“疑难数据库(出版商)”最低求助积分说明 606972
版权声明 596195