LW-IRSTNet: Lightweight Infrared Small Target Segmentation Network and Application Deployment

计算机科学 稳健性(进化) 分割 失败 聚类分析 特征提取 软件部署 特征(语言学) 推论 人工智能 模式识别(心理学) 数据挖掘 并行计算 生物化学 化学 语言学 哲学 基因 操作系统
作者
Renke Kou,Chunping Wang,Ying Yu,Zhenming Peng,Mingbo Yang,Fuyu Huang,Qiang Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:45
标识
DOI:10.1109/tgrs.2023.3314586
摘要

Efficiently and accurately separating infrared (IR) small targets from complex backgrounds presents a significant challenge. Numerous studies in the literature have proposed various feature fusion modules designed specifically to enhance the extraction of IR small target features. While these designs offer some incremental improvement to the accuracy of IR small target detection, they come at a steep cost of significantly increasing network parameters and FLOPs. Striving for a balance between computational efficiency and model accuracy, we decided to forgo these complex feature fusion modules. Instead, we developed a new lightweight encoding and decoding structure known as the Lightweight IR Small Target Segmentation Network (LW-IRSTNet). This structure integrates regular convolutions, depthwise separable convolutions, atrous convolutions, and asymmetric convolutions modules. In addition, we devised post-processing modules including an eight-neighborhood clustering algorithm and an online target feature adjustment strategy. Experimental results indicate that: 1) the segmentation accuracy metrics of LW-IRSTNet match the best results of 14 state-of-the-art comparative baselines; 2) the parameters and FLOPs of LW-IRSTNet, at only 0.16M and 303M respectively, are significantly smaller in comparison to these baselines; and 3) the post-processing modules enhance both user-friendliness and the robustness of algorithm deployment. Moreover, LW-IRSTNet has been successfully implemented on both embedded platforms and websites, expanding its range of applications. Utilizing the ONNX framework, NPU acceleration, and CPU multi-threaded resource allocation, we have been able to achieve high-performance inference capabilities, as well as online dynamic threshold adjustment with the LW-IRSTNet. The source codes for this project can be accessed at https://github.com/kourenke/LW-IRSTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hanyue发布了新的文献求助10
1秒前
yeah完成签到,获得积分10
1秒前
zhou完成签到 ,获得积分10
2秒前
2秒前
2秒前
周爱李完成签到,获得积分10
3秒前
立秋日完成签到,获得积分10
5秒前
如果发布了新的文献求助10
6秒前
xiying发布了新的文献求助10
6秒前
贪玩半仙完成签到 ,获得积分10
6秒前
6秒前
Akim应助RC_Wang采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
奋斗绿蕊发布了新的文献求助10
7秒前
7秒前
8秒前
浮生若梦应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
JoeJ应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
惊蛰完成签到,获得积分10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
lins发布了新的文献求助10
11秒前
12秒前
Akim应助唐唐采纳,获得10
12秒前
13秒前
我是老大应助如果采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262524
求助须知:如何正确求助?哪些是违规求助? 4423472
关于积分的说明 13769822
捐赠科研通 4298194
什么是DOI,文献DOI怎么找? 2358305
邀请新用户注册赠送积分活动 1354627
关于科研通互助平台的介绍 1315823