LW-IRSTNet: Lightweight Infrared Small Target Segmentation Network and Application Deployment

计算机科学 稳健性(进化) 分割 失败 聚类分析 特征提取 软件部署 特征(语言学) 推论 人工智能 模式识别(心理学) 数据挖掘 并行计算 生物化学 化学 语言学 哲学 基因 操作系统
作者
Renke Kou,Chunping Wang,Ying Yu,Zhenming Peng,Mingbo Yang,Fuyu Huang,Qiang Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:36
标识
DOI:10.1109/tgrs.2023.3314586
摘要

Efficiently and accurately separating infrared (IR) small targets from complex backgrounds presents a significant challenge. Numerous studies in the literature have proposed various feature fusion modules designed specifically to enhance the extraction of IR small target features. While these designs offer some incremental improvement to the accuracy of IR small target detection, they come at a steep cost of significantly increasing network parameters and FLOPs. Striving for a balance between computational efficiency and model accuracy, we decided to forgo these complex feature fusion modules. Instead, we developed a new lightweight encoding and decoding structure known as the Lightweight IR Small Target Segmentation Network (LW-IRSTNet). This structure integrates regular convolutions, depthwise separable convolutions, atrous convolutions, and asymmetric convolutions modules. In addition, we devised post-processing modules including an eight-neighborhood clustering algorithm and an online target feature adjustment strategy. Experimental results indicate that: 1) the segmentation accuracy metrics of LW-IRSTNet match the best results of 14 state-of-the-art comparative baselines; 2) the parameters and FLOPs of LW-IRSTNet, at only 0.16M and 303M respectively, are significantly smaller in comparison to these baselines; and 3) the post-processing modules enhance both user-friendliness and the robustness of algorithm deployment. Moreover, LW-IRSTNet has been successfully implemented on both embedded platforms and websites, expanding its range of applications. Utilizing the ONNX framework, NPU acceleration, and CPU multi-threaded resource allocation, we have been able to achieve high-performance inference capabilities, as well as online dynamic threshold adjustment with the LW-IRSTNet. The source codes for this project can be accessed at https://github.com/kourenke/LW-IRSTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助游一采纳,获得10
1秒前
小蘑菇应助zz采纳,获得10
1秒前
2秒前
小蘑菇应助xxxhhh采纳,获得10
2秒前
哈哈完成签到,获得积分10
2秒前
3秒前
legoman发布了新的文献求助10
3秒前
5秒前
5秒前
leiyang49完成签到,获得积分10
5秒前
麦子发布了新的文献求助10
5秒前
6秒前
11发布了新的文献求助10
7秒前
HongY完成签到,获得积分10
7秒前
黄小北发布了新的文献求助10
8秒前
Lucas应助xu采纳,获得10
8秒前
8秒前
three发布了新的文献求助10
8秒前
qnwang完成签到,获得积分10
8秒前
hhhblabla应助爱哭的小女孩采纳,获得10
8秒前
legoman完成签到,获得积分10
9秒前
淡然的寻冬完成签到 ,获得积分10
10秒前
10秒前
10秒前
12秒前
12秒前
victorchen完成签到,获得积分10
13秒前
四月完成签到 ,获得积分10
14秒前
桑尼号完成签到,获得积分10
14秒前
爱哭的小女孩完成签到,获得积分20
14秒前
15秒前
ding应助麦子采纳,获得10
15秒前
LittleTT发布了新的文献求助10
16秒前
yoga完成签到 ,获得积分10
16秒前
ting发布了新的文献求助10
17秒前
something0316发布了新的文献求助20
17秒前
leiiiiiiii发布了新的文献求助10
17秒前
18秒前
打打应助qnwang采纳,获得10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992495
求助须知:如何正确求助?哪些是违规求助? 3533431
关于积分的说明 11262369
捐赠科研通 3273025
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882800
科研通“疑难数据库(出版商)”最低求助积分说明 809496