亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LW-IRSTNet: Lightweight Infrared Small Target Segmentation Network and Application Deployment

计算机科学 稳健性(进化) 分割 失败 聚类分析 特征提取 软件部署 特征(语言学) 推论 人工智能 模式识别(心理学) 数据挖掘 并行计算 生物化学 化学 语言学 哲学 基因 操作系统
作者
Renke Kou,Chunping Wang,Ying Yu,Zhenming Peng,Mingbo Yang,Fuyu Huang,Qiang Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:45
标识
DOI:10.1109/tgrs.2023.3314586
摘要

Efficiently and accurately separating infrared (IR) small targets from complex backgrounds presents a significant challenge. Numerous studies in the literature have proposed various feature fusion modules designed specifically to enhance the extraction of IR small target features. While these designs offer some incremental improvement to the accuracy of IR small target detection, they come at a steep cost of significantly increasing network parameters and FLOPs. Striving for a balance between computational efficiency and model accuracy, we decided to forgo these complex feature fusion modules. Instead, we developed a new lightweight encoding and decoding structure known as the Lightweight IR Small Target Segmentation Network (LW-IRSTNet). This structure integrates regular convolutions, depthwise separable convolutions, atrous convolutions, and asymmetric convolutions modules. In addition, we devised post-processing modules including an eight-neighborhood clustering algorithm and an online target feature adjustment strategy. Experimental results indicate that: 1) the segmentation accuracy metrics of LW-IRSTNet match the best results of 14 state-of-the-art comparative baselines; 2) the parameters and FLOPs of LW-IRSTNet, at only 0.16M and 303M respectively, are significantly smaller in comparison to these baselines; and 3) the post-processing modules enhance both user-friendliness and the robustness of algorithm deployment. Moreover, LW-IRSTNet has been successfully implemented on both embedded platforms and websites, expanding its range of applications. Utilizing the ONNX framework, NPU acceleration, and CPU multi-threaded resource allocation, we have been able to achieve high-performance inference capabilities, as well as online dynamic threshold adjustment with the LW-IRSTNet. The source codes for this project can be accessed at https://github.com/kourenke/LW-IRSTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
葡萄味的果茶完成签到 ,获得积分10
6秒前
6秒前
四壁雪发布了新的文献求助10
7秒前
寻道图强完成签到,获得积分0
7秒前
9秒前
执意完成签到,获得积分10
9秒前
14秒前
在水一方应助王伟采纳,获得10
14秒前
你嵙这个期刊没买完成签到,获得积分10
15秒前
胡图图啦啦完成签到 ,获得积分10
15秒前
19秒前
28秒前
28秒前
30秒前
32秒前
王伟发布了新的文献求助10
34秒前
走啊走发布了新的文献求助10
35秒前
35秒前
chenjingjing发布了新的文献求助10
39秒前
FashionBoy应助四壁雪采纳,获得10
40秒前
41秒前
fantianhui完成签到 ,获得积分10
42秒前
44秒前
捉迷藏完成签到,获得积分0
46秒前
46秒前
Criminology34应助Ginny采纳,获得10
46秒前
大胆的鲂发布了新的文献求助10
46秒前
47秒前
夕瑶摇啊发布了新的文献求助10
50秒前
cmc发布了新的文献求助10
52秒前
爱吃大米饭完成签到 ,获得积分10
55秒前
57秒前
Orange应助cmc采纳,获得10
59秒前
Moihan完成签到,获得积分10
1分钟前
香蕉觅云应助夕瑶摇啊采纳,获得10
1分钟前
1分钟前
weiwei发布了新的文献求助30
1分钟前
1分钟前
new1完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418230
求助须知:如何正确求助?哪些是违规求助? 4533932
关于积分的说明 14142885
捐赠科研通 4450209
什么是DOI,文献DOI怎么找? 2441129
邀请新用户注册赠送积分活动 1432858
关于科研通互助平台的介绍 1410079