LW-IRSTNet: Lightweight Infrared Small Target Segmentation Network and Application Deployment

计算机科学 稳健性(进化) 分割 失败 聚类分析 特征提取 软件部署 特征(语言学) 推论 人工智能 模式识别(心理学) 数据挖掘 并行计算 生物化学 化学 语言学 哲学 基因 操作系统
作者
Renke Kou,Chunping Wang,Ying Yu,Zhenming Peng,Mingbo Yang,Fuyu Huang,Qiang Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:36
标识
DOI:10.1109/tgrs.2023.3314586
摘要

Efficiently and accurately separating infrared (IR) small targets from complex backgrounds presents a significant challenge. Numerous studies in the literature have proposed various feature fusion modules designed specifically to enhance the extraction of IR small target features. While these designs offer some incremental improvement to the accuracy of IR small target detection, they come at a steep cost of significantly increasing network parameters and FLOPs. Striving for a balance between computational efficiency and model accuracy, we decided to forgo these complex feature fusion modules. Instead, we developed a new lightweight encoding and decoding structure known as the Lightweight IR Small Target Segmentation Network (LW-IRSTNet). This structure integrates regular convolutions, depthwise separable convolutions, atrous convolutions, and asymmetric convolutions modules. In addition, we devised post-processing modules including an eight-neighborhood clustering algorithm and an online target feature adjustment strategy. Experimental results indicate that: 1) the segmentation accuracy metrics of LW-IRSTNet match the best results of 14 state-of-the-art comparative baselines; 2) the parameters and FLOPs of LW-IRSTNet, at only 0.16M and 303M respectively, are significantly smaller in comparison to these baselines; and 3) the post-processing modules enhance both user-friendliness and the robustness of algorithm deployment. Moreover, LW-IRSTNet has been successfully implemented on both embedded platforms and websites, expanding its range of applications. Utilizing the ONNX framework, NPU acceleration, and CPU multi-threaded resource allocation, we have been able to achieve high-performance inference capabilities, as well as online dynamic threshold adjustment with the LW-IRSTNet. The source codes for this project can be accessed at https://github.com/kourenke/LW-IRSTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优美茹妖完成签到,获得积分10
1秒前
古卡可可完成签到 ,获得积分10
1秒前
粥粥11发布了新的文献求助30
1秒前
桐桐应助英吉利25采纳,获得10
2秒前
nnnnn完成签到,获得积分10
2秒前
2秒前
bingyu508完成签到,获得积分10
3秒前
baopinjie_2019完成签到,获得积分10
3秒前
一年半太久只争朝夕完成签到,获得积分10
4秒前
悬铃木完成签到,获得积分10
4秒前
俊逸鸣凤发布了新的文献求助10
4秒前
5秒前
俞定尚心才可心完成签到,获得积分10
5秒前
乖加油完成签到,获得积分10
6秒前
6秒前
欣喜的香彤完成签到,获得积分10
6秒前
MiSD完成签到,获得积分10
6秒前
vivvy完成签到,获得积分10
6秒前
luochen完成签到,获得积分10
7秒前
alpv完成签到,获得积分10
7秒前
迷人的沛山完成签到 ,获得积分10
7秒前
外向雁梅发布了新的文献求助10
8秒前
clcl完成签到,获得积分10
8秒前
limecho完成签到,获得积分10
8秒前
8秒前
8秒前
迟迟完成签到 ,获得积分10
8秒前
9秒前
小舞的大树完成签到,获得积分10
9秒前
思念是什么味道完成签到,获得积分10
10秒前
CipherSage应助周周采纳,获得10
10秒前
iwww完成签到,获得积分10
10秒前
kyoko886完成签到,获得积分10
10秒前
耍酷的剑身完成签到,获得积分10
10秒前
科研通AI5应助迷路冰巧采纳,获得10
11秒前
revive发布了新的文献求助10
11秒前
阿凡提发布了新的文献求助10
11秒前
zhanwenlin完成签到 ,获得积分10
11秒前
xiaotailan完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614030
求助须知:如何正确求助?哪些是违规求助? 4018429
关于积分的说明 12438324
捐赠科研通 3701118
什么是DOI,文献DOI怎么找? 2041105
邀请新用户注册赠送积分活动 1073803
科研通“疑难数据库(出版商)”最低求助积分说明 957479