LW-IRSTNet: Lightweight Infrared Small Target Segmentation Network and Application Deployment

计算机科学 稳健性(进化) 分割 失败 聚类分析 特征提取 软件部署 特征(语言学) 推论 人工智能 模式识别(心理学) 数据挖掘 并行计算 生物化学 基因 语言学 操作系统 哲学 化学
作者
Renke Kou,Chunping Wang,Ying Yu,Zhenming Peng,Mingbo Yang,Fuyu Huang,Qiang Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:20
标识
DOI:10.1109/tgrs.2023.3314586
摘要

Efficiently and accurately separating infrared (IR) small targets from complex backgrounds presents a significant challenge. Numerous studies in the literature have proposed various feature fusion modules designed specifically to enhance the extraction of IR small target features. While these designs offer some incremental improvement to the accuracy of IR small target detection, they come at a steep cost of significantly increasing network parameters and FLOPs. Striving for a balance between computational efficiency and model accuracy, we decided to forgo these complex feature fusion modules. Instead, we developed a new lightweight encoding and decoding structure known as the Lightweight IR Small Target Segmentation Network (LW-IRSTNet). This structure integrates regular convolutions, depthwise separable convolutions, atrous convolutions, and asymmetric convolutions modules. In addition, we devised post-processing modules including an eight-neighborhood clustering algorithm and an online target feature adjustment strategy. Experimental results indicate that: 1) the segmentation accuracy metrics of LW-IRSTNet match the best results of 14 state-of-the-art comparative baselines; 2) the parameters and FLOPs of LW-IRSTNet, at only 0.16M and 303M respectively, are significantly smaller in comparison to these baselines; and 3) the post-processing modules enhance both user-friendliness and the robustness of algorithm deployment. Moreover, LW-IRSTNet has been successfully implemented on both embedded platforms and websites, expanding its range of applications. Utilizing the ONNX framework, NPU acceleration, and CPU multi-threaded resource allocation, we have been able to achieve high-performance inference capabilities, as well as online dynamic threshold adjustment with the LW-IRSTNet. The source codes for this project can be accessed at https://github.com/kourenke/LW-IRSTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
...完成签到,获得积分10
1秒前
2秒前
Orange应助qq采纳,获得10
4秒前
5秒前
独享属于自己的风完成签到,获得积分10
6秒前
8秒前
试遣愚忠发布了新的文献求助10
10秒前
今后应助固态采纳,获得10
16秒前
慕青应助舒心的元槐采纳,获得10
20秒前
21秒前
电致阿光完成签到,获得积分10
22秒前
薛定谔完成签到,获得积分10
22秒前
24秒前
困困完成签到 ,获得积分10
24秒前
二号完成签到,获得积分10
25秒前
迟早发布了新的文献求助30
26秒前
26秒前
27秒前
28秒前
固态发布了新的文献求助10
28秒前
caq完成签到,获得积分10
29秒前
32秒前
32秒前
近在眼前完成签到,获得积分10
35秒前
调研昵称发布了新的文献求助10
37秒前
搜集达人应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
共享精神应助科研通管家采纳,获得10
37秒前
香蕉觅云应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
上官若男应助科研通管家采纳,获得10
38秒前
溜了溜了应助科研通管家采纳,获得20
38秒前
38秒前
李健应助科研通管家采纳,获得10
38秒前
Akim应助科研通管家采纳,获得10
38秒前
善良的沛山完成签到,获得积分10
39秒前
luoluo关注了科研通微信公众号
40秒前
要减肥的凡旋完成签到 ,获得积分10
41秒前
43秒前
司空勒完成签到,获得积分10
43秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164233
求助须知:如何正确求助?哪些是违规求助? 2814956
关于积分的说明 7907185
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317571
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228