LW-IRSTNet: Lightweight Infrared Small Target Segmentation Network and Application Deployment

计算机科学 稳健性(进化) 分割 失败 聚类分析 特征提取 软件部署 特征(语言学) 推论 人工智能 模式识别(心理学) 数据挖掘 并行计算 生物化学 化学 语言学 哲学 基因 操作系统
作者
Renke Kou,Chunping Wang,Ying Yu,Zhenming Peng,Mingbo Yang,Fuyu Huang,Qiang Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:45
标识
DOI:10.1109/tgrs.2023.3314586
摘要

Efficiently and accurately separating infrared (IR) small targets from complex backgrounds presents a significant challenge. Numerous studies in the literature have proposed various feature fusion modules designed specifically to enhance the extraction of IR small target features. While these designs offer some incremental improvement to the accuracy of IR small target detection, they come at a steep cost of significantly increasing network parameters and FLOPs. Striving for a balance between computational efficiency and model accuracy, we decided to forgo these complex feature fusion modules. Instead, we developed a new lightweight encoding and decoding structure known as the Lightweight IR Small Target Segmentation Network (LW-IRSTNet). This structure integrates regular convolutions, depthwise separable convolutions, atrous convolutions, and asymmetric convolutions modules. In addition, we devised post-processing modules including an eight-neighborhood clustering algorithm and an online target feature adjustment strategy. Experimental results indicate that: 1) the segmentation accuracy metrics of LW-IRSTNet match the best results of 14 state-of-the-art comparative baselines; 2) the parameters and FLOPs of LW-IRSTNet, at only 0.16M and 303M respectively, are significantly smaller in comparison to these baselines; and 3) the post-processing modules enhance both user-friendliness and the robustness of algorithm deployment. Moreover, LW-IRSTNet has been successfully implemented on both embedded platforms and websites, expanding its range of applications. Utilizing the ONNX framework, NPU acceleration, and CPU multi-threaded resource allocation, we have been able to achieve high-performance inference capabilities, as well as online dynamic threshold adjustment with the LW-IRSTNet. The source codes for this project can be accessed at https://github.com/kourenke/LW-IRSTNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助超级柜子采纳,获得10
刚刚
CodeCraft应助qiyumeng采纳,获得10
1秒前
紧张的斩完成签到 ,获得积分10
1秒前
科研通AI5应助仓鼠侠采纳,获得10
1秒前
Jin0717发布了新的文献求助10
1秒前
2秒前
pol完成签到 ,获得积分10
2秒前
WXG完成签到,获得积分10
2秒前
2秒前
迷人依白完成签到,获得积分10
2秒前
2秒前
ggghost完成签到 ,获得积分10
3秒前
4秒前
发文章12138完成签到,获得积分10
4秒前
zcseed发布了新的文献求助30
5秒前
尚未千万里完成签到,获得积分10
5秒前
czzzzz完成签到,获得积分10
5秒前
6秒前
6秒前
RUN_L发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
2222222222给2222222222的求助进行了留言
7秒前
炙热的小刺猬完成签到,获得积分10
7秒前
fly发布了新的文献求助10
7秒前
7秒前
8秒前
zzzz发布了新的文献求助10
8秒前
香蕉觅云应助鲨鱼辣椒采纳,获得10
8秒前
8秒前
8秒前
Estrella发布了新的文献求助10
8秒前
8秒前
ddd发布了新的文献求助10
9秒前
9秒前
linger发布了新的文献求助10
9秒前
Urusaiina发布了新的文献求助10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
11秒前
yuhangli发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098501
求助须知:如何正确求助?哪些是违规求助? 4310677
关于积分的说明 13431614
捐赠科研通 4137982
什么是DOI,文献DOI怎么找? 2266990
邀请新用户注册赠送积分活动 1270081
关于科研通互助平台的介绍 1206363