微流控
离心机
注意事项
生物医学工程
细胞计数
红细胞压积
检测点注意事项
计算机科学
计算机硬件
纳米技术
材料科学
工程类
化学
病理
医学
物理
生物化学
内分泌学
细胞周期
核物理学
细胞
作者
Reza Khodadadi,Mohammad Hossein Eghbal,Hamideh Ofoghi,Alireza Balaei,Ali Tamayol,Karen Abrinia,Amir Sanati‐Nezhad,Mohamadmahdi Samandari
标识
DOI:10.1016/j.bios.2023.115789
摘要
Centrifugal microfluidics holds the potential to revolutionize point-of-care (POC) testing by simplifying laboratory tests through automating fluid and cell manipulation within microfluidic channels. This technology can facilitate blood testing, the most frequent clinical test, at the POC. However, an integrated centrifugal microfluidic device for complete blood counting (CBC) has not yet been fully realized. To address this, we propose an integrated portable system comprising a centrifuge and a hybrid microfluidic disc specifically designed for CBC analysis at the POC. The disc enables the implementation of various spin profiles in different stages of CBC to facilitate in-situ cell separation, solution metering and mixing, and differential cell counting. Furthermore, our system is coupled with a custom script that automates the process and ensures precise quantification of cells using light and fluorescent images captured from the detection chamber of the disc. We demonstrate a close correlation between the proposed method and the hematology analyzer, considered the gold standard, for quantifying hematocrit (R2 = 0.99), white blood cell count (R2 = 0.98), white blood cell differential count (granulocyte/agranulocyte; R2 = 0.89), red blood cell count (R2 = 0.97), and mean corpuscular volume (R2 = 0.94). The integration of our portable system offers significant advantages, enabling more accessible and affordable CBC testing at the POC. Considering the simplicity, affordability (∼$250 capital cost and <$2 operational cost per test), as well as low power consumption (>100 tests using a typical 24 V/10Ah battery), this system has the potential to enhance healthcare delivery, particularly in resource-limited settings and remote areas where access to traditional laboratory facilities is limited.
科研通智能强力驱动
Strongly Powered by AbleSci AI