An Algorithm Based on Transformer and Temporal Convolution Network for Early Identification of Ternary Gas Mixture

算法 计算机科学 卷积(计算机科学) 三元运算 人工智能 人工神经网络 程序设计语言
作者
Ge Yang,Ruijie Song,Yu Wu,Jun Yu,Jianwei Zhang,Huichao Zhu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (19): 23753-23764 被引量:7
标识
DOI:10.1109/jsen.2023.3302790
摘要

Metal oxide (MOX) gas sensor arrays play an important role in various fields of gas detection, but their development is also limited by their performance deficiencies, such as measurement delays due to slow response times, and cross sensitivity interfering with gas identification. In addition, gas identification typically requires complete time series data of the steady-state response and reaction of the sensor array, which affects the efficiency. In this article, we propose a novel algorithm transformer equipped temporal convolution network (TTCN) based on the transformer and temporal convolution network (TCN) structure that can automatically perform feature extraction and gas mixture recognition on time series data before reaching equilibrium, overcoming the recognition difficulties caused by measurement delays and measurement interferences. This algorithm extracts global and local features using the attention mechanism in the transformer structure and multiscale convolution in the TCN structure to acquire instantaneous information on changes in the trends of gases for improved gas identification. The TTCN provides precise identification of early gas data and identifies ternary mixtures of formaldehyde, ethanol, and acetone with an average identification accuracy of 98.23%. In this study, we carry out in-depth tests to confirm the efficacy of our proposed algorithm and to show its significant advantages over other algorithms. Importantly, the excellent identification performance of the TTCN in the early stages of gas exposure demonstrates its significance for future real-time applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mol完成签到 ,获得积分10
刚刚
Tian发布了新的文献求助10
1秒前
嘟嘟请让一让完成签到,获得积分10
2秒前
3秒前
wenlongliu完成签到,获得积分10
3秒前
aaashirz_发布了新的文献求助10
3秒前
4秒前
1223完成签到,获得积分10
4秒前
李爱国应助薛定谔的猫采纳,获得10
4秒前
Absinthe发布了新的文献求助10
4秒前
苦学僧完成签到,获得积分10
5秒前
5秒前
Nathan发布了新的文献求助10
5秒前
Hello应助火星上的半梅采纳,获得10
5秒前
王俊1314完成签到 ,获得积分10
6秒前
luke17743508621完成签到 ,获得积分10
6秒前
青山完成签到,获得积分10
6秒前
会飞的鱼完成签到,获得积分10
6秒前
天天快乐应助陈军采纳,获得10
7秒前
7秒前
yulong完成签到,获得积分10
7秒前
8秒前
123完成签到,获得积分10
8秒前
8秒前
漂亮小白菜完成签到,获得积分20
8秒前
舒适夜南完成签到,获得积分20
9秒前
轮回1奇点完成签到,获得积分10
9秒前
泡泡泡芙完成签到,获得积分10
9秒前
小二郎应助Polaris采纳,获得10
9秒前
安详的断缘完成签到,获得积分10
9秒前
李爱国应助杰克采纳,获得10
9秒前
不想长大完成签到 ,获得积分20
10秒前
不二发布了新的文献求助10
10秒前
里里完成签到,获得积分10
11秒前
lpp_发布了新的文献求助10
11秒前
11秒前
11秒前
athena完成签到,获得积分10
11秒前
阿郑发布了新的文献求助10
12秒前
着急的傲菡完成签到,获得积分10
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388179
求助须知:如何正确求助?哪些是违规求助? 4510159
关于积分的说明 14034562
捐赠科研通 4421062
什么是DOI,文献DOI怎么找? 2428561
邀请新用户注册赠送积分活动 1421212
关于科研通互助平台的介绍 1400459