An Algorithm Based on Transformer and Temporal Convolution Network for Early Identification of Ternary Gas Mixture

算法 计算机科学 卷积(计算机科学) 三元运算 人工智能 程序设计语言 人工神经网络
作者
Ge Yang,Ruijie Song,Yu Wu,Jun Yu,Jianwei Zhang,Huichao Zhu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (19): 23753-23764 被引量:3
标识
DOI:10.1109/jsen.2023.3302790
摘要

Metal oxide (MOX) gas sensor arrays play an important role in various fields of gas detection, but their development is also limited by their performance deficiencies, such as measurement delays due to slow response times, and cross sensitivity interfering with gas identification. In addition, gas identification typically requires complete time series data of the steady-state response and reaction of the sensor array, which affects the efficiency. In this article, we propose a novel algorithm transformer equipped temporal convolution network (TTCN) based on the transformer and temporal convolution network (TCN) structure that can automatically perform feature extraction and gas mixture recognition on time series data before reaching equilibrium, overcoming the recognition difficulties caused by measurement delays and measurement interferences. This algorithm extracts global and local features using the attention mechanism in the transformer structure and multiscale convolution in the TCN structure to acquire instantaneous information on changes in the trends of gases for improved gas identification. The TTCN provides precise identification of early gas data and identifies ternary mixtures of formaldehyde, ethanol, and acetone with an average identification accuracy of 98.23%. In this study, we carry out in-depth tests to confirm the efficacy of our proposed algorithm and to show its significant advantages over other algorithms. Importantly, the excellent identification performance of the TTCN in the early stages of gas exposure demonstrates its significance for future real-time applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玄狼完成签到,获得积分10
刚刚
1秒前
啤酒味的小羊完成签到,获得积分10
1秒前
SciGPT应助小巧风华采纳,获得10
1秒前
知时节完成签到,获得积分20
4秒前
4秒前
呃呃呃发布了新的文献求助10
4秒前
lighting发布了新的文献求助10
5秒前
风清扬发布了新的文献求助10
5秒前
Orange应助ZHANGMANLI0422采纳,获得10
5秒前
Wing发布了新的文献求助10
5秒前
感动莞完成签到 ,获得积分10
6秒前
深情安青应助TZW采纳,获得10
6秒前
Sg完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
英俊的铭应助liguanyu1078采纳,获得10
8秒前
9秒前
9秒前
10秒前
10秒前
吕邓宏完成签到 ,获得积分10
11秒前
科研通AI6应助静静等待采纳,获得10
11秒前
12秒前
13秒前
lili发布了新的文献求助10
13秒前
13秒前
lighting完成签到,获得积分10
14秒前
fed完成签到 ,获得积分10
14秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
Orange应助看起来不太强采纳,获得10
17秒前
梦梦发布了新的文献求助10
18秒前
curry123发布了新的文献求助10
18秒前
科研通AI5应助Wing采纳,获得10
18秒前
19秒前
wanci应助404938采纳,获得10
20秒前
YANG发布了新的文献求助10
20秒前
z7486完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601699
求助须知:如何正确求助?哪些是违规求助? 4011262
关于积分的说明 12418861
捐赠科研通 3691306
什么是DOI,文献DOI怎么找? 2035016
邀请新用户注册赠送积分活动 1068302
科研通“疑难数据库(出版商)”最低求助积分说明 952792