An Algorithm Based on Transformer and Temporal Convolution Network for Early Identification of Ternary Gas Mixture

算法 计算机科学 卷积(计算机科学) 三元运算 人工智能 程序设计语言 人工神经网络
作者
Ge Yang,Ruijie Song,Yu Wu,Jun Yu,Jianwei Zhang,Huichao Zhu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (19): 23753-23764 被引量:3
标识
DOI:10.1109/jsen.2023.3302790
摘要

Metal oxide (MOX) gas sensor arrays play an important role in various fields of gas detection, but their development is also limited by their performance deficiencies, such as measurement delays due to slow response times, and cross sensitivity interfering with gas identification. In addition, gas identification typically requires complete time series data of the steady-state response and reaction of the sensor array, which affects the efficiency. In this article, we propose a novel algorithm transformer equipped temporal convolution network (TTCN) based on the transformer and temporal convolution network (TCN) structure that can automatically perform feature extraction and gas mixture recognition on time series data before reaching equilibrium, overcoming the recognition difficulties caused by measurement delays and measurement interferences. This algorithm extracts global and local features using the attention mechanism in the transformer structure and multiscale convolution in the TCN structure to acquire instantaneous information on changes in the trends of gases for improved gas identification. The TTCN provides precise identification of early gas data and identifies ternary mixtures of formaldehyde, ethanol, and acetone with an average identification accuracy of 98.23%. In this study, we carry out in-depth tests to confirm the efficacy of our proposed algorithm and to show its significant advantages over other algorithms. Importantly, the excellent identification performance of the TTCN in the early stages of gas exposure demonstrates its significance for future real-time applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
saisai发布了新的文献求助20
1秒前
李健应助高山我梦采纳,获得10
1秒前
4秒前
4秒前
yyds发布了新的文献求助10
4秒前
孙小小完成签到,获得积分10
5秒前
6秒前
滕皓轩发布了新的文献求助10
6秒前
8秒前
高兴的风华完成签到,获得积分10
9秒前
李健应助张杰采纳,获得10
9秒前
Ava应助Watsun采纳,获得30
9秒前
9秒前
脑洞疼应助歆琉采纳,获得10
9秒前
哇咔咔完成签到 ,获得积分10
10秒前
10秒前
孙小小发布了新的文献求助20
10秒前
高山我梦发布了新的文献求助10
13秒前
13秒前
蓝鲸鲸完成签到 ,获得积分20
14秒前
16秒前
16秒前
17秒前
肉酱完成签到 ,获得积分10
17秒前
善学以致用应助隐形冬亦采纳,获得50
18秒前
奥利安费发布了新的文献求助10
20秒前
迷城发布了新的文献求助10
21秒前
青木完成签到 ,获得积分10
22秒前
活泼稀发布了新的文献求助10
22秒前
歆琉完成签到,获得积分20
22秒前
Spectrum_07完成签到,获得积分10
22秒前
11完成签到 ,获得积分10
23秒前
木子水告完成签到,获得积分10
25秒前
Akim应助saisai采纳,获得20
27秒前
27秒前
九天完成签到 ,获得积分10
29秒前
30秒前
Tim完成签到,获得积分10
30秒前
good完成签到,获得积分10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141362
捐赠科研通 3241248
什么是DOI,文献DOI怎么找? 1791412
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803417