已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Small-Molecule Conformer Generators: Evaluation of Traditional Methods and AI Models on High-Quality Data Sets

计算机科学 构象异构 任务(项目管理) 标杆管理 质量(理念) 集合(抽象数据类型) 机器学习 领域(数学) 药物发现 人工智能 小分子 数据挖掘 化学 分子 数学 物理 工程类 生物化学 有机化学 系统工程 营销 量子力学 纯数学 业务 程序设计语言
作者
Zhe Wang,Haiyang Zhong,Jintu Zhang,Peichen Pan,Dong Wang,Huanxiang Liu,Xiaojun Yao,Tingjun Hou,Yu Kang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6525-6536 被引量:8
标识
DOI:10.1021/acs.jcim.3c01519
摘要

Small-molecule conformer generation (SMCG) is an extremely important task in both ligand- and structure-based computer-aided drug design, especially during the hit discovery phase. Recently, a multitude of artificial intelligence (AI) models tailored for SMCG have emerged. Despite developers typically furnishing performance evaluation data upon releasing their AI models, a comprehensive and equitable performance comparison between AI models and conventional methods is still lacking. In this study, we curated a new benchmarking data set comprising 3354 high-quality ligand bioactive conformations. Subsequently, we conducted a systematic assessment of the performance of four widely adopted traditional methods (i.e., ConfGenX, Conformator, OMEGA, and RDKit ETKDG) and five AI models (i.e., ConfGF, DMCG, GeoDiff, GeoMol, and torsional diffusion) in the tasks of reproducing bioactive and low-energy conformations of small molecules. In the former task, the AI models have no advantage, particularly with a maximum ensemble size of 1. Even the best-performing AI model GeoMol is still worse than any of the tested traditional methods. Conversely, in the latter task, the torsional diffusion model shows obvious advantages, surpassing the best-performing traditional method ConfGenX by 26.09 and 12.97% on the COV-R and COV-P metrics, respectively. Furthermore, the influence of force field-based fine-tuning on the quality of the generated conformers was also discussed. Finally, a user-friendly Web server called fastSMCG was developed to enable researchers to rapidly and flexibly generate small-molecule conformers using both traditional and AI methods. We anticipate that our work will offer valuable practical assistance to the scientific community in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weibo完成签到,获得积分10
1秒前
英姑应助聪聪great采纳,获得10
4秒前
RWcreator完成签到 ,获得积分10
4秒前
橘子柚子完成签到 ,获得积分10
5秒前
DocM完成签到 ,获得积分10
6秒前
大包鸡完成签到 ,获得积分10
6秒前
Lester完成签到 ,获得积分10
6秒前
所所应助高铭泽采纳,获得10
8秒前
丘比特应助高铭泽采纳,获得10
8秒前
大模型应助高铭泽采纳,获得10
8秒前
汉堡包应助高铭泽采纳,获得10
8秒前
小马甲应助高铭泽采纳,获得10
8秒前
欧皇完成签到,获得积分20
10秒前
欧皇发布了新的文献求助50
11秒前
Lucas应助哆啦小奶龙采纳,获得10
12秒前
boldhammer完成签到 ,获得积分10
12秒前
漓一完成签到 ,获得积分10
14秒前
15秒前
16秒前
jingutaimi完成签到,获得积分10
17秒前
Caer完成签到,获得积分10
19秒前
19秒前
19秒前
机智灯泡完成签到 ,获得积分10
21秒前
22秒前
山复尔尔完成签到 ,获得积分10
22秒前
菲菲完成签到 ,获得积分10
23秒前
精明冰夏完成签到,获得积分10
23秒前
风不定发布了新的文献求助30
24秒前
李程阳完成签到 ,获得积分10
25秒前
小机灵发布了新的文献求助10
26秒前
twinkle完成签到 ,获得积分10
28秒前
小吴完成签到,获得积分10
29秒前
选兵完成签到,获得积分10
30秒前
伶俐的金连完成签到 ,获得积分10
30秒前
pass完成签到 ,获得积分10
30秒前
曲淳完成签到,获得积分10
31秒前
31秒前
哆啦小奶龙完成签到,获得积分10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504