Small-Molecule Conformer Generators: Evaluation of Traditional Methods and AI Models on High-Quality Data Sets

计算机科学 构象异构 任务(项目管理) 标杆管理 质量(理念) 集合(抽象数据类型) 机器学习 领域(数学) 药物发现 人工智能 小分子 数据挖掘 化学 分子 数学 物理 工程类 生物化学 有机化学 系统工程 营销 量子力学 纯数学 业务 程序设计语言
作者
Zhe Wang,Haiyang Zhong,Jintu Zhang,Peichen Pan,Dong Wang,Huanxiang Liu,Xiaojun Yao,Tingjun Hou,Yu Kang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6525-6536 被引量:8
标识
DOI:10.1021/acs.jcim.3c01519
摘要

Small-molecule conformer generation (SMCG) is an extremely important task in both ligand- and structure-based computer-aided drug design, especially during the hit discovery phase. Recently, a multitude of artificial intelligence (AI) models tailored for SMCG have emerged. Despite developers typically furnishing performance evaluation data upon releasing their AI models, a comprehensive and equitable performance comparison between AI models and conventional methods is still lacking. In this study, we curated a new benchmarking data set comprising 3354 high-quality ligand bioactive conformations. Subsequently, we conducted a systematic assessment of the performance of four widely adopted traditional methods (i.e., ConfGenX, Conformator, OMEGA, and RDKit ETKDG) and five AI models (i.e., ConfGF, DMCG, GeoDiff, GeoMol, and torsional diffusion) in the tasks of reproducing bioactive and low-energy conformations of small molecules. In the former task, the AI models have no advantage, particularly with a maximum ensemble size of 1. Even the best-performing AI model GeoMol is still worse than any of the tested traditional methods. Conversely, in the latter task, the torsional diffusion model shows obvious advantages, surpassing the best-performing traditional method ConfGenX by 26.09 and 12.97% on the COV-R and COV-P metrics, respectively. Furthermore, the influence of force field-based fine-tuning on the quality of the generated conformers was also discussed. Finally, a user-friendly Web server called fastSMCG was developed to enable researchers to rapidly and flexibly generate small-molecule conformers using both traditional and AI methods. We anticipate that our work will offer valuable practical assistance to the scientific community in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
wugang完成签到 ,获得积分10
3秒前
3秒前
4秒前
袁保蓉发布了新的文献求助10
4秒前
Volume发布了新的文献求助10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得50
5秒前
诗谙完成签到,获得积分10
5秒前
laber应助科研通管家采纳,获得50
5秒前
无花果应助科研通管家采纳,获得10
5秒前
尹梦成应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
6秒前
chenqiumu应助科研通管家采纳,获得50
6秒前
89757发布了新的文献求助20
6秒前
ding应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得30
6秒前
Anhber应助科研通管家采纳,获得10
6秒前
6秒前
Ava应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
dew应助科研通管家采纳,获得10
7秒前
chenqiumu应助科研通管家采纳,获得30
7秒前
尹梦成应助科研通管家采纳,获得10
7秒前
单薄雪柳应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
23333完成签到,获得积分20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305259
求助须知:如何正确求助?哪些是违规求助? 4451472
关于积分的说明 13852140
捐赠科研通 4338857
什么是DOI,文献DOI怎么找? 2382237
邀请新用户注册赠送积分活动 1377329
关于科研通互助平台的介绍 1344719