Small-Molecule Conformer Generators: Evaluation of Traditional Methods and AI Models on High-Quality Data Sets

计算机科学 构象异构 任务(项目管理) 标杆管理 质量(理念) 集合(抽象数据类型) 机器学习 领域(数学) 药物发现 人工智能 小分子 数据挖掘 化学 分子 数学 物理 工程类 生物化学 有机化学 系统工程 营销 量子力学 纯数学 业务 程序设计语言
作者
Zhe Wang,Haiyang Zhong,Jintu Zhang,Peichen Pan,Dong Wang,Huanxiang Liu,Xiaojun Yao,Tingjun Hou,Yu Kang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6525-6536 被引量:8
标识
DOI:10.1021/acs.jcim.3c01519
摘要

Small-molecule conformer generation (SMCG) is an extremely important task in both ligand- and structure-based computer-aided drug design, especially during the hit discovery phase. Recently, a multitude of artificial intelligence (AI) models tailored for SMCG have emerged. Despite developers typically furnishing performance evaluation data upon releasing their AI models, a comprehensive and equitable performance comparison between AI models and conventional methods is still lacking. In this study, we curated a new benchmarking data set comprising 3354 high-quality ligand bioactive conformations. Subsequently, we conducted a systematic assessment of the performance of four widely adopted traditional methods (i.e., ConfGenX, Conformator, OMEGA, and RDKit ETKDG) and five AI models (i.e., ConfGF, DMCG, GeoDiff, GeoMol, and torsional diffusion) in the tasks of reproducing bioactive and low-energy conformations of small molecules. In the former task, the AI models have no advantage, particularly with a maximum ensemble size of 1. Even the best-performing AI model GeoMol is still worse than any of the tested traditional methods. Conversely, in the latter task, the torsional diffusion model shows obvious advantages, surpassing the best-performing traditional method ConfGenX by 26.09 and 12.97% on the COV-R and COV-P metrics, respectively. Furthermore, the influence of force field-based fine-tuning on the quality of the generated conformers was also discussed. Finally, a user-friendly Web server called fastSMCG was developed to enable researchers to rapidly and flexibly generate small-molecule conformers using both traditional and AI methods. We anticipate that our work will offer valuable practical assistance to the scientific community in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮又晴发布了新的文献求助10
刚刚
1秒前
迷路巧曼发布了新的文献求助20
1秒前
cc发布了新的文献求助30
1秒前
烂漫的雅容完成签到,获得积分10
2秒前
阿猫完成签到,获得积分10
2秒前
2秒前
烯灯发布了新的文献求助10
3秒前
传奇3应助唐文硕采纳,获得10
3秒前
zzy加油发布了新的文献求助10
3秒前
默默曼安发布了新的文献求助10
3秒前
LL完成签到 ,获得积分10
3秒前
云浪之外完成签到,获得积分10
3秒前
walu发布了新的文献求助50
3秒前
椰汁发布了新的文献求助10
4秒前
4秒前
4秒前
fhz完成签到,获得积分20
5秒前
劲进发布了新的文献求助10
5秒前
完美世界应助李雯雯采纳,获得10
6秒前
Criminology34应助悦耳青曼采纳,获得10
7秒前
耍酷的甜瓜完成签到,获得积分10
7秒前
8秒前
神啊救救我吧完成签到,获得积分10
8秒前
liyuze完成签到 ,获得积分10
8秒前
8秒前
jl发布了新的文献求助10
9秒前
幽默不愁完成签到,获得积分10
9秒前
蟹老板完成签到,获得积分10
10秒前
11秒前
肖恩完成签到,获得积分10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
好的完成签到,获得积分10
12秒前
13秒前
13秒前
Harbour完成签到,获得积分10
13秒前
元谷雪应助优美紫槐采纳,获得10
13秒前
张悦林完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836