Small-Molecule Conformer Generators: Evaluation of Traditional Methods and AI Models on High-Quality Data Sets

计算机科学 构象异构 任务(项目管理) 标杆管理 质量(理念) 集合(抽象数据类型) 机器学习 领域(数学) 药物发现 人工智能 小分子 数据挖掘 化学 分子 数学 物理 工程类 生物化学 有机化学 系统工程 营销 量子力学 纯数学 业务 程序设计语言
作者
Zhe Wang,Haiyang Zhong,Jintu Zhang,Peichen Pan,Dong Wang,Huanxiang Liu,Xiaojun Yao,Tingjun Hou,Yu Kang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6525-6536 被引量:8
标识
DOI:10.1021/acs.jcim.3c01519
摘要

Small-molecule conformer generation (SMCG) is an extremely important task in both ligand- and structure-based computer-aided drug design, especially during the hit discovery phase. Recently, a multitude of artificial intelligence (AI) models tailored for SMCG have emerged. Despite developers typically furnishing performance evaluation data upon releasing their AI models, a comprehensive and equitable performance comparison between AI models and conventional methods is still lacking. In this study, we curated a new benchmarking data set comprising 3354 high-quality ligand bioactive conformations. Subsequently, we conducted a systematic assessment of the performance of four widely adopted traditional methods (i.e., ConfGenX, Conformator, OMEGA, and RDKit ETKDG) and five AI models (i.e., ConfGF, DMCG, GeoDiff, GeoMol, and torsional diffusion) in the tasks of reproducing bioactive and low-energy conformations of small molecules. In the former task, the AI models have no advantage, particularly with a maximum ensemble size of 1. Even the best-performing AI model GeoMol is still worse than any of the tested traditional methods. Conversely, in the latter task, the torsional diffusion model shows obvious advantages, surpassing the best-performing traditional method ConfGenX by 26.09 and 12.97% on the COV-R and COV-P metrics, respectively. Furthermore, the influence of force field-based fine-tuning on the quality of the generated conformers was also discussed. Finally, a user-friendly Web server called fastSMCG was developed to enable researchers to rapidly and flexibly generate small-molecule conformers using both traditional and AI methods. We anticipate that our work will offer valuable practical assistance to the scientific community in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新新完成签到,获得积分10
刚刚
emberflow完成签到,获得积分10
1秒前
战神幽默完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
烟花应助小丸子呀采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
3333r发布了新的文献求助10
3秒前
wind完成签到,获得积分10
3秒前
3秒前
求助文献发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
min应助祁岳颐采纳,获得10
5秒前
5秒前
温暖冬日完成签到,获得积分10
5秒前
零度蓝莓发布了新的文献求助10
5秒前
5秒前
6秒前
丁婷发布了新的文献求助10
6秒前
7秒前
Mr.Reese完成签到,获得积分10
7秒前
西瓜发布了新的文献求助10
7秒前
www发布了新的文献求助10
7秒前
自由一一完成签到,获得积分10
7秒前
bkagyin应助cardiology采纳,获得10
8秒前
LIU完成签到,获得积分10
8秒前
科研通AI6应助芝士学报采纳,获得10
8秒前
8秒前
BareBear应助科研通管家采纳,获得10
8秒前
8秒前
wanci应助科研通管家采纳,获得10
8秒前
fei发布了新的文献求助200
9秒前
wanci应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786