Small-Molecule Conformer Generators: Evaluation of Traditional Methods and AI Models on High-Quality Data Sets

计算机科学 构象异构 任务(项目管理) 标杆管理 质量(理念) 集合(抽象数据类型) 机器学习 领域(数学) 药物发现 人工智能 小分子 数据挖掘 化学 分子 数学 物理 工程类 生物化学 有机化学 系统工程 营销 量子力学 纯数学 业务 程序设计语言
作者
Zhe Wang,Haiyang Zhong,Jintu Zhang,Peichen Pan,Dong Wang,Huanxiang Liu,Xiaojun Yao,Tingjun Hou,Yu Kang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6525-6536 被引量:8
标识
DOI:10.1021/acs.jcim.3c01519
摘要

Small-molecule conformer generation (SMCG) is an extremely important task in both ligand- and structure-based computer-aided drug design, especially during the hit discovery phase. Recently, a multitude of artificial intelligence (AI) models tailored for SMCG have emerged. Despite developers typically furnishing performance evaluation data upon releasing their AI models, a comprehensive and equitable performance comparison between AI models and conventional methods is still lacking. In this study, we curated a new benchmarking data set comprising 3354 high-quality ligand bioactive conformations. Subsequently, we conducted a systematic assessment of the performance of four widely adopted traditional methods (i.e., ConfGenX, Conformator, OMEGA, and RDKit ETKDG) and five AI models (i.e., ConfGF, DMCG, GeoDiff, GeoMol, and torsional diffusion) in the tasks of reproducing bioactive and low-energy conformations of small molecules. In the former task, the AI models have no advantage, particularly with a maximum ensemble size of 1. Even the best-performing AI model GeoMol is still worse than any of the tested traditional methods. Conversely, in the latter task, the torsional diffusion model shows obvious advantages, surpassing the best-performing traditional method ConfGenX by 26.09 and 12.97% on the COV-R and COV-P metrics, respectively. Furthermore, the influence of force field-based fine-tuning on the quality of the generated conformers was also discussed. Finally, a user-friendly Web server called fastSMCG was developed to enable researchers to rapidly and flexibly generate small-molecule conformers using both traditional and AI methods. We anticipate that our work will offer valuable practical assistance to the scientific community in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助Aqk9采纳,获得10
刚刚
chunyan_sysu发布了新的文献求助10
刚刚
刚刚
C1992003558发布了新的文献求助10
刚刚
cishiwen发布了新的文献求助10
刚刚
1秒前
1秒前
无极微光应助叼得一采纳,获得20
1秒前
谦让的紫烟完成签到,获得积分20
2秒前
玛卡巴卡发布了新的文献求助10
2秒前
xxx完成签到,获得积分10
2秒前
Hilda007应助jelle采纳,获得10
3秒前
4秒前
4秒前
温柔梦松发布了新的文献求助10
4秒前
4秒前
5秒前
爱丽丝敏完成签到,获得积分10
5秒前
FashionBoy应助雨梦迟歌采纳,获得10
6秒前
沙漠水发布了新的文献求助10
7秒前
白枫发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
领导范儿应助luraaaa采纳,获得10
8秒前
8秒前
10秒前
11秒前
12秒前
852应助唐嘉宏采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
小徐完成签到,获得积分10
13秒前
8R60d8完成签到,获得积分0
13秒前
Yuan完成签到,获得积分10
13秒前
14秒前
14秒前
陈源完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244