The Probabilistic Liveness Decision Method of Unbounded Petri Nets Based on Machine Learning

活泼 可达性 Petri网 计算机科学 特征(语言学) 理论计算机科学 人工智能 图形 算法 语言学 哲学
作者
Hongda Qi,Junli Wang,Chungang Yan,Changjun Jiang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 1070-1081 被引量:2
标识
DOI:10.1109/tsmc.2023.3323342
摘要

The liveness of Petri nets (PNs) means that every event can occur in any state, establishing a close relationship with the deadlock-free property of existing systems. Due to the problem of state space explosion and the infinite state space of unbounded PNs (UPNs), the time complexity and space complexity of the liveness decision are difficult to give accurate measures; at least, they are both NP-hard. Except for some particular subclasses of UPNs, there has not been an accurate method to decide the liveness of generalized UPNs. Thus, a liveness decision method from a machine learning perspective is proposed to predict probability values about UPNs’ liveness within a finite time. The method aims to learn the feature information on UPNs by deep neural networks and establish the mapping relationship between the UPNs and the liveness. First, the concept of approximating infinite space with finite states is applied to generate reachability graphs at different moments, following the firing rules of a UPN. Then, the graph convolutional network (GCN)-based reachability graph feature representation module and the gated recurrent unit (GRU)-based UPN feature representation module are designed to map the reachability graphs at different moments into the low-dimensional feature space. And the feature vector that can characterize the UPN’s liveness is obtained to decide the liveness probabilistically. Finally, three datasets, including 50 000 samples, are constructed. Based on these datasets and some case studies, the experimental results validate the method’s ability to make liveness decisions for UPNs, demonstrating its strong performance in terms of effectiveness and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lx完成签到 ,获得积分10
刚刚
科研通AI2S应助annoraz采纳,获得50
刚刚
核桃nut完成签到,获得积分10
1秒前
智慧莎完成签到,获得积分10
1秒前
2秒前
领导范儿应助煎蛋公主采纳,获得10
2秒前
害羞的玉米完成签到,获得积分10
4秒前
4秒前
xingxing发布了新的文献求助10
4秒前
JIA应助zxcvbnm采纳,获得10
6秒前
叶液完成签到,获得积分10
6秒前
风中小刺猬完成签到,获得积分10
7秒前
gaos发布了新的文献求助10
7秒前
ming完成签到 ,获得积分10
7秒前
云母完成签到 ,获得积分10
7秒前
111完成签到,获得积分20
8秒前
8秒前
隐形之玉完成签到,获得积分10
9秒前
故意的傲玉应助小曾采纳,获得10
9秒前
10秒前
乐乐应助Khr1stINK采纳,获得10
10秒前
土里刨星星的鱼完成签到,获得积分10
10秒前
11秒前
斯文的蚂蚁完成签到,获得积分10
12秒前
12秒前
大模型应助宝木小草刀采纳,获得10
13秒前
13秒前
13秒前
怕黑荠发布了新的文献求助10
14秒前
15秒前
15秒前
选波发布了新的文献求助10
17秒前
传奇3应助顾初安采纳,获得10
17秒前
原林皓发布了新的文献求助10
17秒前
17秒前
cruise发布了新的文献求助10
19秒前
理li完成签到,获得积分10
19秒前
包远锋完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522849
求助须知:如何正确求助?哪些是违规求助? 3103786
关于积分的说明 9267447
捐赠科研通 2800458
什么是DOI,文献DOI怎么找? 1536934
邀请新用户注册赠送积分活动 715309
科研通“疑难数据库(出版商)”最低求助积分说明 708693