亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LiteFormer: A Lightweight and Efficient Transformer for Rotating Machine Fault Diagnosis

计算 变压器 计算机科学 稳健性(进化) 计算机工程 人工智能 可靠性工程 机器学习 工程类 算法 电压 电气工程 生物化学 化学 基因
作者
Wenjun Sun,Ruqiang Yan,Ruibing Jin,Jiawen Xu,Yuan Yang,Zhenghua Chen
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/tr.2023.3322860
摘要

Transformer has shown impressive performance on global feature modeling in many applications. However, two drawbacks induced by its intrinsic architecture limit its application, especially in fault diagnosis. First, the quadratic complexity of its self-attention scheme extremely increases the computation cost, which poses a challenge to apply Transformer to a computationally limited platform like an industry system. In addition, the sequence-based modeling in the Transformer increases the training difficulty and requires a large-scale training dataset. This drawback becomes serious when Transformer is applied in fault diagnosis where only limited data is available. To mitigate these issues, we rethink this common approach and propose a new Transformer, which is more suitable for fault diagnosis. In this article, we first show that the attention module can be actually replaced with or even surpassed by a convolution layer under some conditions in mathematics and experiments. Then, we adopt the convolutions into the Transformer, where the computation burden issue is alleviated and the fault classification accuracy is significantly improved. Furthermore, to increase the computation efficiency, a lightweight Transformer called LiteFormer, is developed by utilizing the depth-wise convolutional layer. Extensive experiments are carried out on four datasets: Case Western Reserve University dataset; Paderborn University dataset; and two gearbox datasets of drivetrain dynamic simulator. Through our experiments, our LiteFormer not only reduces the computation cost in model training, but also sets new state-of-the-art results, surpassing other counterparts in both fault classification accuracy and model robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老白非发布了新的文献求助10
6秒前
6秒前
cece发布了新的文献求助10
8秒前
cece完成签到,获得积分10
35秒前
40秒前
活泼的熊猫完成签到,获得积分20
52秒前
无情的瑾瑜完成签到 ,获得积分10
1分钟前
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
苹果王子6699完成签到 ,获得积分10
2分钟前
zqq完成签到,获得积分0
2分钟前
犹豫芝麻完成签到,获得积分10
3分钟前
灰色白面鸮完成签到,获得积分10
3分钟前
3分钟前
YifanWang应助科研通管家采纳,获得30
4分钟前
YifanWang应助科研通管家采纳,获得30
4分钟前
YifanWang应助科研通管家采纳,获得30
4分钟前
4分钟前
lab完成签到 ,获得积分0
4分钟前
4分钟前
4分钟前
ai zs发布了新的文献求助10
4分钟前
毛123完成签到,获得积分10
4分钟前
丫丫完成签到 ,获得积分10
5分钟前
陈芒果啊完成签到 ,获得积分10
5分钟前
郁乾完成签到,获得积分10
5分钟前
小枣完成签到 ,获得积分10
5分钟前
5分钟前
YifanWang应助科研通管家采纳,获得30
6分钟前
樱桃猴子应助科研通管家采纳,获得20
6分钟前
orixero应助材料虎采纳,获得10
6分钟前
6分钟前
材料虎发布了新的文献求助10
6分钟前
6分钟前
7分钟前
何何发布了新的文献求助10
7分钟前
Ldq完成签到 ,获得积分10
7分钟前
李爱国应助wwwww采纳,获得10
7分钟前
传奇完成签到 ,获得积分10
7分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813328
关于积分的说明 7899645
捐赠科研通 2472791
什么是DOI,文献DOI怎么找? 1316517
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142