LiteFormer: A Lightweight and Efficient Transformer for Rotating Machine Fault Diagnosis

计算 变压器 计算机科学 稳健性(进化) 计算机工程 人工智能 可靠性工程 机器学习 工程类 算法 电压 电气工程 生物化学 化学 基因
作者
Wenjun Sun,Ruqiang Yan,Ruibing Jin,Jiawen Xu,Yuan Yang,Zhenghua Chen
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:73 (2): 1258-1269 被引量:6
标识
DOI:10.1109/tr.2023.3322860
摘要

Transformer has shown impressive performance on global feature modeling in many applications. However, two drawbacks induced by its intrinsic architecture limit its application, especially in fault diagnosis. First, the quadratic complexity of its self-attention scheme extremely increases the computation cost, which poses a challenge to apply Transformer to a computationally limited platform like an industry system. In addition, the sequence-based modeling in the Transformer increases the training difficulty and requires a large-scale training dataset. This drawback becomes serious when Transformer is applied in fault diagnosis where only limited data is available. To mitigate these issues, we rethink this common approach and propose a new Transformer, which is more suitable for fault diagnosis. In this article, we first show that the attention module can be actually replaced with or even surpassed by a convolution layer under some conditions in mathematics and experiments. Then, we adopt the convolutions into the Transformer, where the computation burden issue is alleviated and the fault classification accuracy is significantly improved. Furthermore, to increase the computation efficiency, a lightweight Transformer called LiteFormer, is developed by utilizing the depth-wise convolutional layer. Extensive experiments are carried out on four datasets: Case Western Reserve University dataset; Paderborn University dataset; and two gearbox datasets of drivetrain dynamic simulator. Through our experiments, our LiteFormer not only reduces the computation cost in model training, but also sets new state-of-the-art results, surpassing other counterparts in both fault classification accuracy and model robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wonderfulwisdom完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
3秒前
田様应助聪慧小霜采纳,获得10
4秒前
4秒前
4秒前
Owen应助聪慧小霜采纳,获得10
4秒前
赘婿应助聪慧小霜采纳,获得10
4秒前
桐桐应助聪慧小霜采纳,获得10
4秒前
5秒前
柳柳完成签到,获得积分10
7秒前
大模型应助fhbsdufh采纳,获得10
7秒前
搜集达人应助L2采纳,获得10
7秒前
lf关闭了lf文献求助
8秒前
MSman完成签到,获得积分10
9秒前
Lucas应助悟已往之不谏采纳,获得10
9秒前
霸的彤发布了新的文献求助10
9秒前
10秒前
搜集达人应助聪慧小霜采纳,获得10
10秒前
爆米花应助聪慧小霜采纳,获得10
10秒前
星辰大海应助聪慧小霜采纳,获得10
10秒前
领导范儿应助聪慧小霜采纳,获得10
10秒前
10秒前
Akim应助聪慧小霜采纳,获得10
10秒前
今后应助聪慧小霜采纳,获得10
10秒前
orixero应助聪慧小霜采纳,获得10
10秒前
桐桐应助聪慧小霜采纳,获得10
10秒前
dzhe完成签到,获得积分10
11秒前
12秒前
12秒前
哈哈哈哈发布了新的文献求助10
13秒前
14秒前
霸的彤发布了新的文献求助10
14秒前
科目三应助菠萝派采纳,获得10
15秒前
如约而至发布了新的文献求助10
16秒前
xxxzy完成签到,获得积分10
16秒前
Binbin发布了新的文献求助10
16秒前
路遥发布了新的文献求助30
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011