Xi Chen,Meiqi Yang,Sunxiang Zheng,Fernando Temprano-Coleto,Qi Dong,Guangming Cheng,Nan Yao,Howard A. Stone,Liangbing Hu,Zhiyong Jason Ren
标识
DOI:10.1038/s44221-023-00131-3
摘要
Limited lithium supply is hindering the global transformation towards electrification and decarbonization. Current lithium mining can be energy, chemical and land intensive. Here we present an efficient and self-concentrating crystallization method for the selective extraction of lithium from both brine and seawater. The sequential and separable crystallization of cation species with different concentrations and solubilities was enabled by a twisted and slender 3D porous natural cellulose fibre structure via capillary and evaporative flows. The process exhibited an evaporation rate as high as 9.8 kg m−2 h−1, and it selectively concentrated lithium by orders of magnitude. The composition and spatial distribution of crystals were characterized, and a transport model deciphered the ion re-distribution process in situ. We also demonstrated system scalability via a 100-crystallizer array. Lithium mining is both energy and land intensive. The use of a 3D porous natural cellulose fibre structure enables an interfacial crystallization method for the selective extraction of lithium from both brine and seawater that can be a significant alternative to mining.