亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effect of partial shading on photovoltaic systems performance and its mitigation techniques-a review

底纹 光伏系统 投资(军事) 计算机科学 可靠性工程 还原(数学) 环境经济学 汽车工程 环境科学 电气工程 工程类 经济 数学 计算机图形学(图像) 几何学 政治 法学 政治学
作者
Nikhil Kushwaha,Vinod Kumar Yadav,Radheshyam Saha
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:45 (4): 11155-11180
标识
DOI:10.1080/15567036.2023.2254731
摘要

ABSTRACTThe installed capacity of photovoltaic (PV) systems is increasing at an exponential rate around the world because it has the potential to meet the ever-increasing demand for energy and simultaneously mitigate the climate change crisis. Sustained investment in this energy sector over the last two decades has enabled researchers to introduce innovations in all related aspects, including maximizing cell efficiency, optimizing manufacturing processes, building public opinion, and project financing. These advancements have made PV technology the most affordable energy technology globally.However, PV technology faces some inherent technical challenges that diminish its effectiveness in providing green energy leading to a lower scale of decarbonization. One of these challenges is the premature failure of PV modules due to a phenomenon called a hot spot under partial shading. Research shows that PV cells may potentially undergo reverse breakdown under partial shading conditions, leading to temperatures of up to 400°C. Such high temperatures not only reduce PV performance but also cause irreversible damage and premature module failure, and even fire in extreme cases. The extent of power output reduction depends on the shading pattern on a PV system, irradiation, geographical location, and time of the day. For example, a single shaded cell in a module can cause a power loss of up to 50%, while multiple shaded cells can lead to a reduction of up to 90%. On average, partial shading can cause a power loss of 10–15% in a PV system. In this paper, a comprehensive review on the theoretical background of reverse breakdown mechanisms in PV cells/systems and various techniques to mitigate the effects of partial shading has been carried out with an exhaustive literature survey. As of the current date, researchers have suggested using module-level power electronics (MLPEs) to increase the energy yield of shaded PV systems by 5–25%, depending on the shading conditions and the type of MLPE technology. Nevertheless, the use of maximum power point tracking (MPPT) can enhance the efficiency of shaded PV systems is proposed to have augmented up to 30%.KEYWORDS: Hot spotpartial shadingphotovoltaicsreverse breakdownMPPT Nomenclature Abbreviations=PV=PhotovoltaicPV-TE=PV-thermometricMC-FDTD=Monte Carlo-Finite Difference Time DomainCNT=Carbon NanotubeMLPEs=Module-Level Power ElectronicsPERC=Passivated Emitter and Rear CellAl-BSF=Aluminum Back Surface FieldPID=Potential Induced Degradationn-PERT=N-Type Passivated Emitter Rear Totally diffusedLSC PV=luminescent solar concentrator PVc-Si=Crystalline siliconPSC=partial shading conditionsMPP=Maximum Power PointMPPT=MPP TrackingDMPPT=Distributed MPPTBPD=Bypass DiodeSTC=standard test conditionsSubMICs=Submodule Integrated ConvertersMOSFET=Metal-Oxide-Semiconductor Field-Effect TransistorCSD=Conduction State DetectionIGBT=Insulated-Gate Bipolar TransistorNMOS=N-channel Metal-oxide SemiconductorPCM=phase-changing materialTCT=Total-Cross-TiedBL=Bridge-LinkHC=Honey CombSP=Series-ParallelPLC=Programmable Logic ControllerSCU=Supervision Control UnitSDKP=SuDoKu puzzledIC=Incremental ConductanceO-TCT=Optimal TCTRSP=Reconfigurable SPLS-TCT=Latin-based puzzle-based TCTM-TCT=Modified TCTNS=Novel StructureCDV=Cross Diagonal ViewKKSP=Ken-Ken Square puzzledWDO=Wind-Driven OptimizationDE=Differential EvolutionCS=Cuckoo SearchSCA=Sine-Cosine AlgorithmGA=Genetic AlgorithmHSA=Harmony Search AlgorithmPSO=Particle Swarm OptimizationEL-PSO=Enhanced Leader-PSOANN=Artificial Neural NetworkPWM=Pulse Width ModulationFSCC=Fractional Short Circuit CurrentEM=Electromagnetism-Like Mechanism AlgorithmHIT=Heterojunction with Intrinsic Thin layerGWO=Grey Wolf OptimizerBFO=Bacterial Foraging OptimizationIGD=Improved Gradient DescentGOA=Grasshopper Optimization AlgorithmP&O=Perturb & ObserveSymbol=VR=Reverse VoltageVF=Forward (Open Circuit) VoltageVD=Forward Voltage DropI-V=Current VoltageDisclosure statementWe hereby declare that there is no conflict of interest with regards to this article.Additional informationNotes on contributorsNikhil KushwahaNikhil Kushwaha received the B.Tech Degree in Electrical & Electronics Engineering from UPTU, Uttar Pradesh, India in 2010, The M.Tech Degree In Power System Engineering from National Institute of Technology, Hamirpur, India, in 2012. He is currently working toward the Ph.D. degree with Delhi Technological University, Delhi, India. His research interests include Solar Array PV Reconfiguration, Hot-spot mitigation, diagnostic and monitoring techniques for photovoltaic devices and systems.Vinod Kumar YadavVinod Kumar Yadav (Senior Member, IEEE) received the B. Tech. degree in electrical engineering from the Institute of Engineering and Technology, Bareilly, Idia, in 2003, the M. Tech. degree in power system engineering from the National Institute of Technology, Jamshedpur, India, in 2005, and the Ph.D. degree in power system engineering from the Indian Institute of Technology, Roorkee, India, in 2011. His research interests include renewable energy systems, power system planning and optimization, distributed generations, and smart grid.Radheshyam SahaRadheshyam Saha worked as the Chief Engineer at the Central Electricity Authority and is currently serving as a Professor in the Electrical Engineering Department at Delhi Technical University (DTU) in Delhi, India. He received his Ph.D. degree in FACTS Technology from the Indian Institute of Technology, Delhi, India, in 2008. His research interests include HVDC and Power Systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桃花源的瓶起子完成签到 ,获得积分10
6秒前
8秒前
HTniconico完成签到 ,获得积分10
10秒前
壮观匪发布了新的文献求助10
14秒前
15秒前
江夏清完成签到,获得积分10
22秒前
24秒前
An发布了新的文献求助10
25秒前
心语完成签到 ,获得积分10
25秒前
有魅力的半仙完成签到,获得积分20
26秒前
mm完成签到 ,获得积分10
33秒前
42秒前
有魅力的半仙关注了科研通微信公众号
42秒前
42秒前
Rose发布了新的文献求助10
47秒前
土书发布了新的文献求助10
48秒前
LL完成签到,获得积分10
49秒前
传奇3应助踏实的惜萍采纳,获得10
55秒前
57秒前
土书完成签到,获得积分10
1分钟前
Paris发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
黄小柒发布了新的文献求助10
1分钟前
壮观匪完成签到,获得积分10
1分钟前
曦耀发布了新的文献求助10
1分钟前
1分钟前
小王发布了新的文献求助10
1分钟前
1分钟前
所所应助黄小柒采纳,获得10
1分钟前
1分钟前
fu完成签到,获得积分10
1分钟前
木有完成签到 ,获得积分10
1分钟前
科研通AI6应助小王采纳,获得10
1分钟前
Mirzat107发布了新的文献求助10
1分钟前
April完成签到 ,获得积分10
1分钟前
Kkk完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582179
捐赠科研通 4562367
什么是DOI,文献DOI怎么找? 2500155
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450795