材料科学
表面等离子共振
功勋
折射率
光电子学
石墨烯
硅
表面等离子体子
生物传感器
电介质
二氧化硅
图层(电子)
等离子体子
光学
纳米技术
纳米颗粒
物理
冶金
作者
Annu Yadav,Pooja Lohia,Sachin Singh,Sapana Yadav,Adarsh Chandra Mishra,D. K. Dwivedi
标识
DOI:10.1002/pssa.202300471
摘要
The most popular method to determine the sensitivity of surface plasmon resonance (SPR) sensors in the last couple of decades has been angular interrogation. The silver layer (Ag), a 2D layer of TiO 2 , and dielectric material layer such as silicon (Si) with heterostructure material graphene are all stacked in the proposed SPR sensor. To increase sensitivity of SPR sensor in the visible area, the device structure focuses on the Kretschmann configuration, by which a TiO 2 sheet is sandwiched between silver and silicon sheets. The proposed device structure makes use of the operational wavelength of 633 nm. The numerical simulation has been performed in MATLAB software in this device structure. The simulation results show that an analyte of refractive indices ranges 1.345–1.350. A single layer of silicon 3 nm and TiO 2 10 nm makes up the suggested SPR configuration, which increases the sensitivity to 281° RIU −1 . Herein, it has also been computed the figure of merit, detection accuracy, limit of detection, full width at half maximum, and transverse magnetic electric field intensity. The biomedical and chemical fields have benefited from the proposed SPR sensor structure design.
科研通智能强力驱动
Strongly Powered by AbleSci AI