Digital Twin in Oil and Gas Equipment for Predictive Maintenance

预测性维护 断层(地质) 过程(计算) 计算机科学 可预测性 数字数据 MATLAB语言 工程类 可靠性工程 控制工程 计算机硬件 地质学 地震学 物理 操作系统 数据传输 量子力学
作者
Mehdi Dehghan
标识
DOI:10.4043/32857-ms
摘要

Abstract Digital twins as a virtual model that is designed to reflect a physical system can improve the performance of electrical and mechanical components in industries. With digital twin technology, the industrial organization can be assumed in a way that they implement a sustainable solution with stability and predictability. By using MATLAB and Simulink, in this paper, a digital twin was demonstrated for Electro-Mechanical parts of the drilling for oil and gas industries. Hence, every single element of electrical and mechanical components was defined including the rotational parts separately, then by connecting those parts, the entire process in a closed-loop control system can be controlled. Having this digital twin, healthy data was generated for the situation that the system is working properly, as well as failure data that can be assigned for those components that are prone to wear and failure. Considering a fault in the digital twin in every specific part of the equipment, fault data was generated that can be used for data analysis and machine learning to find a Remaining Useful Life (RUL). To show how it is possible, in the next step, a digital twin for a triplex hydraulic pump that is crucial equipment in the oil and gas industries was investigated, then by having a simulation in healthy and faulty situations the required data were generated. Having data, an RUL was defined by implementing a data analysis and machine learning that can be implemented to have predictive maintenance for the system and it is shown how building a digital twin and having predictive maintenance for our system may boost productivity while decreasing unexpected downtime, which is costly and time-consuming.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
阿怪完成签到,获得积分10
2秒前
2秒前
2秒前
在水一方应助Hima采纳,获得10
3秒前
个性的紫菜应助kkjay采纳,获得20
3秒前
Neil完成签到,获得积分10
3秒前
哈哈哈哈发布了新的文献求助30
3秒前
稳wen发布了新的文献求助10
3秒前
个性的紫菜应助Suagy采纳,获得10
3秒前
包颜发布了新的文献求助10
4秒前
777完成签到,获得积分20
4秒前
rad1413驳回了ding应助
4秒前
科研通AI2S应助toking采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
HuiyunXiao发布了新的文献求助10
6秒前
落寞白曼发布了新的文献求助10
6秒前
优秀的采蓝完成签到 ,获得积分10
6秒前
醉书生完成签到,获得积分10
7秒前
公冶立辉发布了新的文献求助10
7秒前
dava完成签到,获得积分20
7秒前
笑笑应助gaogao采纳,获得10
8秒前
敏感绮露发布了新的文献求助10
8秒前
xiiin发布了新的文献求助10
8秒前
斯文败类应助Yin采纳,获得10
9秒前
李爱笑完成签到,获得积分10
9秒前
岳努力岳幸运完成签到 ,获得积分10
9秒前
公冶立辉发布了新的文献求助10
9秒前
公冶立辉发布了新的文献求助10
9秒前
公冶立辉发布了新的文献求助10
9秒前
dd完成签到,获得积分10
9秒前
Ooops完成签到,获得积分10
9秒前
晨曦将至完成签到,获得积分10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384