Intelligent modelling of unconfined compressive strength of cement stabilised iron ore tailings: a case study of Golgohar mine

压实 抗压强度 尾矿 水泥 铁矿石 人工神经网络 环境科学 固化(化学) 含水量 岩土工程 工程类 材料科学 机器学习 计算机科学 冶金 复合材料
作者
Ali Reza Ghanizadeh,Farzad Safi Jahanshahi,Seyed Saber Naseralavi
出处
期刊:European Journal of Environmental and Civil Engineering [Informa]
卷期号:28 (8): 1759-1787 被引量:2
标识
DOI:10.1080/19648189.2023.2276133
摘要

During iron ore process, a substantial amount of iron ore tailings (IOT) are generated, which can be caused environmental challenges. To mitigate this issue, the stabilised IOT can be repurposed as road material. The unconfined compressive strength (UCS) parameter is typically used to assess the quality control and mix designing of stabilised materials, which its measurement is time-consuming due to the required curing time (CT). Consequently, implementing machine learning techniques to determine and predict UCS values can significantly streamline the process and reduce mix design as well as quality control costs. This research aims to evaluate various machine learning models to predict the UCS of cement-stabilised IOT. Four input variables including cement percentage, CT, compaction moisture content (MC) and compaction energy were considered for UCS modelling. A comparison of the statistical results from the developed models revealed that the artificial neural network (ANN) method exhibited superior accuracy for both training and testing data, with R2 values of 0.96 and 0.97, respectively. Moreover, a sensitivity analysis of the ANN model demonstrated that cement percentage had the most significant impact on the UCS, while compaction MC had the least. Lastly, a parametric study was conducted to evaluate the influence of various variables on the UCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
小柠檬发布了新的文献求助10
2秒前
he发布了新的文献求助10
2秒前
2秒前
CodeCraft应助啵啵采纳,获得10
2秒前
3秒前
otaro发布了新的文献求助30
3秒前
贝利亚发布了新的文献求助10
3秒前
清脆的台灯完成签到,获得积分10
4秒前
范范完成签到 ,获得积分10
4秒前
星辰大海应助starry采纳,获得10
5秒前
科研通AI5应助Xxxnnian采纳,获得30
5秒前
执着的小蘑菇完成签到,获得积分10
6秒前
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
顺顺发布了新的文献求助10
6秒前
上官若男应助科研通管家采纳,获得30
6秒前
汉堡包应助科研通管家采纳,获得30
6秒前
6秒前
烟花应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
maox1aoxin应助科研通管家采纳,获得30
7秒前
无花果应助科研通管家采纳,获得10
8秒前
11完成签到,获得积分10
8秒前
8秒前
8秒前
时尚的书易给时尚的书易的求助进行了留言
8秒前
南北完成签到,获得积分10
9秒前
9秒前
9秒前
MADKAI发布了新的文献求助20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678