Accelerating Federated Learning With Data and Model Parallelism in Edge Computing

计算机科学 GSM演进的增强数据速率 平行性(语法) 边缘计算 数据并行性 任务并行性 计算机体系结构 人工智能 并行计算
作者
Yunming Liao,Yang Xu,Hongli Xu,Zhiwei Yao,Lun Wang,Chunming Qiao
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 904-918 被引量:13
标识
DOI:10.1109/tnet.2023.3299851
摘要

Recently, edge AI has been launched to mine and discover valuable knowledge at network edge. Federated Learning, as an emerging technique for edge AI, has been widely deployed to collaboratively train models on many end devices in data-parallel fashion. To alleviate the computation/communication burden on the resource-constrained workers (e.g., end devices) and protect user privacy, Spilt Federated Learning (SFL), which integrates both data parallelism and model parallelism in Edge Computing (EC), is becoming a practical and popular approach for model training over distributed data. However, apart from the resource limitation, SFL still faces two other critical challenges in EC, i.e., system heterogeneity and context dynamics. To overcome these challenges, we present an efficient SFL method, named AdaSFL, which controls both local updating frequency and batch size to better accelerate model training. We theoretically analyze the model convergence rate and obtain a convergence upper bound regarding local updating frequency given a fixed batch size. Upon this, we develop a control algorithm to determine adaptive local updating frequency and diverse batch sizes for heterogeneous workers to enhance the training efficiency. The experimental results show that AdaSFL can reduce the completion time by about 43% and the network traffic consumption by about 31% for achieving the similar test accuracy, compared to the baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研韭菜发布了新的文献求助10
刚刚
科研通AI5应助爱学习采纳,获得10
刚刚
科研通AI5应助跳跃的太阳采纳,获得10
刚刚
苏尔琳诺完成签到,获得积分10
刚刚
科研通AI5应助a1oft采纳,获得10
1秒前
1秒前
关关过完成签到,获得积分10
1秒前
呢不辣完成签到,获得积分10
1秒前
1秒前
shi hui应助陈博士采纳,获得10
1秒前
1秒前
糖糖关注了科研通微信公众号
2秒前
2秒前
小恶于完成签到 ,获得积分10
2秒前
科研通AI2S应助落晨采纳,获得10
3秒前
3秒前
4秒前
半颗橙子发布了新的文献求助10
4秒前
小可爱完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
Jiangnj发布了新的文献求助30
6秒前
samantha完成签到,获得积分10
7秒前
7秒前
俎树同完成签到 ,获得积分10
7秒前
Natsu完成签到,获得积分10
7秒前
马保国123发布了新的文献求助10
8秒前
丘比特应助无限的隶采纳,获得10
8秒前
在云里爱与歌完成签到,获得积分10
9秒前
迟大猫应助研究生采纳,获得10
9秒前
可行完成签到,获得积分10
9秒前
9秒前
yuhui完成签到,获得积分10
9秒前
10秒前
pi发布了新的文献求助10
10秒前
10秒前
小蘑菇应助科研菜鸟采纳,获得10
11秒前
Owen应助晚风采纳,获得10
11秒前
小二郎应助Jiangnj采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762