Accelerating Federated Learning With Data and Model Parallelism in Edge Computing

计算机科学 GSM演进的增强数据速率 平行性(语法) 边缘计算 数据并行性 任务并行性 计算机体系结构 人工智能 并行计算
作者
Yunming Liao,Yang Xu,Hongli Xu,Zhiwei Yao,Lun Wang,Chunming Qiao
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (1): 904-918 被引量:13
标识
DOI:10.1109/tnet.2023.3299851
摘要

Recently, edge AI has been launched to mine and discover valuable knowledge at network edge. Federated Learning, as an emerging technique for edge AI, has been widely deployed to collaboratively train models on many end devices in data-parallel fashion. To alleviate the computation/communication burden on the resource-constrained workers (e.g., end devices) and protect user privacy, Spilt Federated Learning (SFL), which integrates both data parallelism and model parallelism in Edge Computing (EC), is becoming a practical and popular approach for model training over distributed data. However, apart from the resource limitation, SFL still faces two other critical challenges in EC, i.e., system heterogeneity and context dynamics. To overcome these challenges, we present an efficient SFL method, named AdaSFL, which controls both local updating frequency and batch size to better accelerate model training. We theoretically analyze the model convergence rate and obtain a convergence upper bound regarding local updating frequency given a fixed batch size. Upon this, we develop a control algorithm to determine adaptive local updating frequency and diverse batch sizes for heterogeneous workers to enhance the training efficiency. The experimental results show that AdaSFL can reduce the completion time by about 43% and the network traffic consumption by about 31% for achieving the similar test accuracy, compared to the baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郎泽昆完成签到,获得积分10
3秒前
joan完成签到,获得积分10
4秒前
4秒前
slokni发布了新的文献求助10
6秒前
7秒前
8秒前
文艺人达完成签到 ,获得积分10
9秒前
11秒前
快乐小子发布了新的文献求助10
11秒前
12秒前
凉水发布了新的文献求助10
12秒前
12秒前
JamesPei应助slokni采纳,获得10
13秒前
14秒前
迷你的颖发布了新的文献求助10
14秒前
我是老大应助蒽女士采纳,获得10
15秒前
神内打工人完成签到 ,获得积分10
15秒前
17秒前
量子星尘发布了新的文献求助30
17秒前
17秒前
17秒前
18秒前
Orange应助iiiau采纳,获得10
19秒前
吉吉发布了新的文献求助10
19秒前
19秒前
宿舍发布了新的文献求助10
19秒前
Serena完成签到 ,获得积分10
20秒前
紧张的毛衣完成签到,获得积分10
21秒前
22秒前
gao完成签到,获得积分10
22秒前
23秒前
syyy发布了新的文献求助10
23秒前
今后应助山山而川采纳,获得10
23秒前
盘尼西林完成签到,获得积分10
23秒前
阿佑发布了新的文献求助30
23秒前
24秒前
酷波er应助醉熏的沛萍采纳,获得10
25秒前
田様应助开开采纳,获得10
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005849
求助须知:如何正确求助?哪些是违规求助? 4249332
关于积分的说明 13240684
捐赠科研通 4049124
什么是DOI,文献DOI怎么找? 2215180
邀请新用户注册赠送积分活动 1225086
关于科研通互助平台的介绍 1145619