亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of Diagnosis and Typological Characteristics Associated with Ferroptosis for Ulcerative Colitis via Bioinformatics and Machine Learning

英夫利昔单抗 溃疡性结肠炎 逻辑回归 鉴定(生物学) Lasso(编程语言) 计算生物学 支持向量机 机器学习 计算机科学 人工智能 生物信息学 医学 生物 疾病 内科学 万维网 植物
作者
Weihao Wang,Xujiao Song,Shanshan Ding,Hao Ma
出处
期刊:Endocrine, metabolic & immune disorders [Bentham Science Publishers]
卷期号:24 (8): 946-957 被引量:2
标识
DOI:10.2174/0118715303263609231101074056
摘要

Objective: To investigate and validate ferroptosis genes (FRGs) in ulcerative colitis (UC) for diagnostic, subtype, and biological agent reactivity, with the goal of providing a foundation for the identification of novel therapeutic targets and the rational use of infliximab in clinical practice. Methods: UC datasets and FRGs were selected from the Gene Expression Omnibus (GEO) and FerrDb databases. WGCNA was used to identify characteristic genes of UC. LASSO and SVM models were used to discover key FRGs in UC. A nomogram was constructed for diagnosing UC using logistic regression (LR), We performed internal and external validation for the model. Furthermore, we constructed a hub-gene-signature prediction model for the effectiveness of infliximab in treating UC and deployed it on the website. Finally, the hub gene-drug interaction networks were constructed. Results: Nineteen ferroptosis-related genes associated with UC were identified through bioinformatics analysis. FTH1 and GPX4 were two of the down-regulated genes.The seventeen upregulated genes consisted of DUOX1, DUOX2, SOCS1, LPIN1, QSOX1, TRIM21, IDO1, SLC7A11, MUC1, HSPA5, SCD, ACSL3, NOS2, PARP9, PARP14, LCN2, and TRIB2. Five hub genes, including LCN2, QSOX1, MUC1, IDO1, and TRIB2, were acquried via machine learning. The mean auc of internal validation was 0.964 and 0.965 respectively, after using cross-validation and bootstrap in the training set based on the 5 hub-gene diagnostic models. In the external validation set, the AUC reached 0.976 and 0.858. RF model performs best in predicting infliximab effectiveness. In addition, we identified two ferroptosis subtypes. Cluster A mostly overlaps with the high-risk score group, with a hyperinflammatory phenotype. method: UC datasets and FRGs were selected from the Gene Expression Omnibus (GEO) and FerrDb databases. WGCNA was used to identify characteristic genes of UC. LASSO and SVM models were used to discover key FRGs in UC. A nomogram was constructed for diagnosing UC using logistic regression (LR), We performed internal and external validation for the model. Furthermore, we constructed a 5 hub-gene-signature prediction model for the effectiveness of infliximab in treating UC and deployed it on the web site. Finally, 5 hub gene-drug interaction networks were constructed. Conclusions: This research indicated that five hub genes related to ferroptosis might be potential markers in diagnosing and predicting infliximab sensitivity for UC. result: A total of 362 genes were found to be closely associated with UC . These genes were enriched in immune response, response to stress, oxidoreductase activity, glycerolipid metabolism, ferroptosis, etc. Five ferroptosis-related hub genes were identified through machine learning, including LCN2, QSOX1, MUC1, IDO1, and TRIB2. The mean auc of internal validation was 0.964 and 0.965 respectively, after using cross-validation and booststrap in the training set. In the external validation set, the AUC of the diagnostic model reached 0.858. RF model performs best in predicting infliximab effectiveness. In addition, we identified two ferroptosis subtypes. ClusterA mostly overlaps with the highrisk score group, with a hyperinflammatory phenotype. conclusion: This research indicated that five hub genes related to ferroptosis might be potential markers in diagnosing and predicting infliximab sensitivity for UC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
olekravchenko给olekravchenko的求助进行了留言
4秒前
9秒前
matrixu完成签到,获得积分10
12秒前
Lorain完成签到,获得积分10
12秒前
wanci应助天真咖啡豆采纳,获得10
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
23秒前
ovo发布了新的文献求助50
29秒前
33秒前
伏城完成签到 ,获得积分10
34秒前
39秒前
量子星尘发布了新的文献求助10
39秒前
66完成签到,获得积分20
41秒前
激动的晓筠完成签到 ,获得积分10
50秒前
53秒前
54秒前
mo完成签到 ,获得积分10
57秒前
zxcv22100发布了新的文献求助10
58秒前
小肥完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
充电宝应助zxcv22100采纳,获得10
1分钟前
1分钟前
大大小发布了新的文献求助10
1分钟前
Ava应助66采纳,获得10
1分钟前
1分钟前
getgetting发布了新的文献求助10
1分钟前
沐风完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Haha发布了新的文献求助10
1分钟前
66发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助Haha采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743757
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462