Fabricating MOF@COF core-shell catalyst with remarkable CO2 adsorption capacity and charge carrier dynamic for efficient CO2 conversion

亚胺 吸附 光催化 共价有机骨架 化学工程 共价键 催化作用 化学 载流子 复合数 材料科学 纳米技术 有机化学 复合材料 光电子学 工程类
作者
Gen Li,Mei Wang,Weiqiang Zhou,Xin Liu,Zhi Zhu,Xianghai Song,Pengwei Huo
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:968: 171919-171919 被引量:12
标识
DOI:10.1016/j.jallcom.2023.171919
摘要

In this study, we utilized Zn-atz (MOFs) with a high CO2 adsorption capacity and composite it with COF-TD (COFs) via an imine bond to form Zn-atz@COF-TD. The resulting composite material exhibited a significantly higher CO2 adsorption capacity of reaching 39.0 cm3g−1, which was 2.3 times that of Zn-atz and 9.0 times that of COF-TD. The exceptional CO2 adsorption ability enhanced the concentration of CO2 around the active sites, which is beneficial for CO2 reduction. Moreover, the covalent bonding of Zn-atz to COF-TD through an imine bond provided a pathway for charge carrier transfer, facilitating electron-hole separation and migration. These two advantages synergistically accelerated the conversion of CO2 with high efficiency. Under the optimal reaction conditions, Zn-atz@COF-TD demonstrated a CO evolution rate of 8.94 μmolg−1h−1, which is 4.5 times that of Zn-atz and 2.3 times that of COF-TD. Isotope labeling experiments confirmed that the resulting CO was derived from CO2. Additionally, the photocatalysis reaction process is environmentally friendly as it does not require any sacrificial agent. Based on the results of in situ FT-IR spectra, a proposed reaction pathway of photocatalytic CO2 reduction is presented. This study offers novel insights into the utilization of MOFs@COFs-based materials with a core-shell structure in the field of photocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
orixero应助欢呼凝冬采纳,获得10
2秒前
诗乃发布了新的文献求助10
2秒前
十一发布了新的文献求助10
2秒前
3秒前
qll完成签到,获得积分10
3秒前
傅荣轩完成签到,获得积分10
3秒前
5秒前
刻苦黎云完成签到,获得积分10
5秒前
5秒前
活力立诚完成签到,获得积分10
5秒前
6秒前
6秒前
NANI发布了新的文献求助10
7秒前
flippedaaa完成签到 ,获得积分10
8秒前
hailan发布了新的文献求助10
8秒前
朴实迎梅发布了新的文献求助10
8秒前
在水一方应助凡凡采纳,获得10
8秒前
忧心的碧完成签到,获得积分20
9秒前
9秒前
优雅的废完成签到,获得积分10
10秒前
FashionBoy应助optics1992采纳,获得10
11秒前
11秒前
等待的龙猫完成签到,获得积分10
11秒前
tanc完成签到,获得积分10
11秒前
11秒前
高高天抒完成签到,获得积分10
12秒前
英俊的铭应助zz采纳,获得10
12秒前
12秒前
ENG发布了新的文献求助10
12秒前
13秒前
Azure完成签到,获得积分10
13秒前
廿二发布了新的文献求助30
14秒前
量子星尘发布了新的文献求助10
14秒前
神勇晓旋完成签到,获得积分10
14秒前
eye完成签到,获得积分10
14秒前
十一完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027