Collaborative Active Learning Based on Improved Capsule Networks for Hyperspectral Image Classification

计算机科学 人工智能 高光谱成像 水准点(测量) 机器学习 注释 上下文图像分类 人工神经网络 深度学习 模式识别(心理学) 数据挖掘 图像(数学) 大地测量学 地理
作者
Heng Wang,Liguo Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-26 被引量:2
标识
DOI:10.1109/tgrs.2023.3309269
摘要

For hyperspectral image classification (HIC) tasks, most uncertainty-based active learning (AL) methods only consider the uncertainty, without considering the diversity of actively selected samples and the budget of expert labeling. In this paper, we propose a collaborative active learning (CAL) framework to address this problem. The proposed framework consists of two well-designed base classifiers and an ingenious CAL scheme that takes into account both the uncertainty and diversity of actively selected samples and the cost of expert annotation. Specifically, get benefit from the capsule networks’ ability to accurately identify and locate features, we design two improved capsule networks. For these two networks, we call the first CapsViT (Capsule Vision Transformer), which introduces Vision Transformer (ViT) into the capsule network (CapsNet) to learn the global relationship between the capsule features. We call the second CapsGLOM (Capsule GLOM), the basic structure of this network is derived from the GLOM system proposed by Geoffrey Hinton, we learn from the way CapsNet constructs the primary capsules to improve its implementation details. CapsViT and CapsGLOM are used as the two base classifiers in the proposed CAL framework to select the most informative samples according to the CAL scheme under the premise of fully considering the cost of expert annotation. Experimental results on four benchmark hyperspectral image data sets show that our proposed CAL framework can achieve satisfactory classification results. At the same time, compared with other advanced deep models, our proposed CapsViT and CapsGLOM are also competitive in the supervised HIC tasks. The source code can be available online (https://github.com/swiftest/CAL).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zd发布了新的文献求助10
刚刚
1秒前
传奇3应助yujie采纳,获得10
2秒前
2秒前
夏娜世尊应助blUe采纳,获得10
3秒前
77发布了新的文献求助20
4秒前
华老五发布了新的文献求助20
6秒前
聪慧的玉米完成签到 ,获得积分10
7秒前
wq关闭了wq文献求助
8秒前
tuanheqi应助甜美的冰烟采纳,获得50
9秒前
10秒前
林洁佳完成签到,获得积分10
11秒前
12秒前
Yolanda发布了新的文献求助10
13秒前
胡HML完成签到,获得积分10
13秒前
13秒前
共享精神应助Azyyyy采纳,获得10
13秒前
queen814发布了新的文献求助30
14秒前
16秒前
敲一下叮发布了新的文献求助10
17秒前
18秒前
20秒前
龙虾发票完成签到,获得积分10
20秒前
21秒前
yujie发布了新的文献求助10
21秒前
科研通AI2S应助英勇的电话采纳,获得10
25秒前
多多发布了新的文献求助30
26秒前
26秒前
27秒前
望常桑完成签到 ,获得积分10
28秒前
乐天林完成签到 ,获得积分10
28秒前
30秒前
32秒前
研友_VZG7GZ应助JMao采纳,获得10
32秒前
jingchengke完成签到,获得积分10
33秒前
TOO完成签到 ,获得积分10
33秒前
珍珠奶茶发布了新的文献求助10
33秒前
飞兰完成签到,获得积分20
34秒前
35秒前
36秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155733
求助须知:如何正确求助?哪些是违规求助? 2806988
关于积分的说明 7871273
捐赠科研通 2465265
什么是DOI,文献DOI怎么找? 1312193
科研通“疑难数据库(出版商)”最低求助积分说明 629928
版权声明 601892