Experimental investigation of nanoparticle enhanced polyol solid–solid phase change material aided heat sink with integrated heat pipe for electronic cooling application

材料科学 散热片 相变材料 复合材料 相变 纳米颗粒 多元醇 化学工程 机械工程 热力学 纳米技术 物理 工程类 聚氨酯
作者
S. Krishnan,S. Suresh,V.C. Midhun,Soumya Ranjan Behera
出处
期刊:Thermal science and engineering progress [Elsevier BV]
卷期号:46: 102222-102222 被引量:11
标识
DOI:10.1016/j.tsep.2023.102222
摘要

Solid Solid phase change materials (SS_PCM) based thermal management systems (TMS) integrated with heat pipe are considered as excellent passive thermal management solution for electronic packages. To enhance the thermal conductivity of SS_PCM, nano-enhanced solid-solid phase change material (NE_SSPCM) samples were prepared by incorporating Neopentyl Glycol (NPG) with 1 wt.% of Graphene nanoplatelets (GnP), Copper oxide (CuO) and Aluminium oxide (Al2O3) nanoparticles separately and its thermophysical characterisation study was performed. NE_SSPCM packed heat sink integrated with heat pipe was tested at different power levels from 9-13 W and its thermal performance was compared with TMS based on Empty heat sink, PCM-packed heat sink and PCM-packed finned heat sink configurations. TGA and FTIR characterisation techniques revealed good thermal and chemical stability for all NE_SSPCM without affecting the structure of NPG. DSC showed reduction in phase transition enthalpy for NE_SSPCM than SS_PCM. Thermal conductivities of NPG with 1 wt.% of GnP, CuO and Al2O3 nanoparticles improved with relative enhancement ratios of 1.8, 1.5 and 0.8, respectively. From the experimental analysis, NE_SSPCM with heat pipe configuration showed outstanding average improvement by 7, 4.3 and 4.2 times at 9-13 W. Additionally, by extending safe operational period, all configurations were more effective at lower heat generation rates. In contrast to three nanoparticles, GnP based NE_SSPCM showed outstanding average improvement of 1.8 over NPG for PCM-based configurations. The study concluded that implementation of GnP in SS_PCM assisted heat sinks with heat pipe exhibited maximum enhancement ratio of 11.3 and demonstrated remarkable efficacy in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
佟佳Red发布了新的文献求助10
1秒前
1秒前
华仔应助iuuuuu采纳,获得10
1秒前
Hello应助wanghuiyanyx采纳,获得10
1秒前
2秒前
幸运完成签到,获得积分10
2秒前
2秒前
科研通AI5应助FKHY采纳,获得30
2秒前
suliang发布了新的文献求助10
3秒前
顾矜应助yuxixi采纳,获得10
3秒前
机灵的冷之完成签到 ,获得积分10
3秒前
子车茗应助fsx524402采纳,获得30
4秒前
4秒前
5秒前
易相逢发布了新的文献求助10
5秒前
杏月小女子完成签到,获得积分10
5秒前
you完成签到,获得积分10
5秒前
6秒前
喜喜完成签到,获得积分10
6秒前
7秒前
我记不得这许多名字完成签到,获得积分10
7秒前
lorentzh发布了新的文献求助10
7秒前
科研通AI5应助天才瞳瞳采纳,获得10
7秒前
共享精神应助耶耶采纳,获得10
7秒前
8秒前
8秒前
8秒前
nlm发布了新的文献求助10
8秒前
8秒前
chen发布了新的文献求助10
9秒前
碧蓝青梦发布了新的文献求助10
10秒前
小将军完成签到,获得积分10
10秒前
李爱国应助nnbn采纳,获得10
10秒前
jpdong完成签到,获得积分10
11秒前
11秒前
wwww发布了新的文献求助10
12秒前
断舍离发布了新的文献求助10
12秒前
喜喜发布了新的文献求助10
12秒前
打打应助跳跃的烨华采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755736
求助须知:如何正确求助?哪些是违规求助? 3298997
关于积分的说明 10108251
捐赠科研通 3013681
什么是DOI,文献DOI怎么找? 1655196
邀请新用户注册赠送积分活动 789635
科研通“疑难数据库(出版商)”最低求助积分说明 753338