Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast‐Enhanced MRI

医学 磁共振成像 乳房磁振造影 淋巴血管侵犯 无线电技术 接收机工作特性 动态增强MRI 放射科 逻辑回归 人口 乳腺癌 核医学 癌症 乳腺摄影术 转移 内科学 环境卫生
作者
Xiuqi Yang,Xiaohong Fan,Shanyue Lin,Yingjun Zhou,Haibo Liu,Xuefei Wang,Zhichao Zuo,Zeng Ying
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2238-2249 被引量:15
标识
DOI:10.1002/jmri.29060
摘要

Background Assessment of lymphovascular invasion (LVI) in breast cancer (BC) primarily relies on preoperative needle biopsy. There is an urgent need to develop a non‐invasive assessment method. Purpose To develop an effective model to assess the LVI status in patients with BC using magnetic resonance imaging morphological features (MRI‐MF), Radiomics, and deep learning (DL) approaches based on dynamic contrast‐enhanced MRI (DCE‐MRI). Study Type Cross‐sectional retrospective cohort study. Population The study included 206 BC patients, with 136 in the training set [97 LVI(−) and 39 LVI(+) cases; median age: 51.5 years] and 70 in the test set [52 LVI(−) and 18 LVI(+) cases; median age: 48 years]. Field Strength/Sequence 1.5 T/T1‐weighted images, fat‐suppressed T2‐weighted images, diffusion‐weighted imaging (DWI), and DCE‐MRI. Assessment The MRI‐MF model was developed with conventional MR features using logistic analyses. The Radiomic feature extraction process involved collecting data from categorized DCE‐MRI datasets, specifically the first and second post‐contrast images (A1 and A2). Next, a DL model was implemented to determine LVI. Finally, we established a joint diagnosis model by combining the MRI‐MF, Radiomics, and DL approaches. Statistical Tests Diagnostic performance was compared using receiver operating characteristic curve analysis, confusion matrix, and decision curve analysis. Results Rim sign and peritumoral edema features were used to develop the MRI‐MF model, while six Radiomics signature from the A1 and A2 images were used for the Radiomics model. The joint model (MRI‐MF + Radiomics + DL models) achieved the highest accuracy (area under the curve [AUC] = 0.857), being significantly superior to the MRI‐MF (AUC = 0.724), Radiomics (AUC = 0.736), or DL (AUC = 0.740) model. Furthermore, it also outperformed the pairwise combination models: Radiomics + MRI‐MF (AUC = 0.796), DL + MRI‐MF (AUC = 0.796), or DL + Radiomics (AUC = 0.826). Data Conclusion The joint model incorporating MRI‐MF, Radiomics, and DL approaches can effectively determine the LVI status in patients with BC before surgery. Level of Evidence 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静青寒完成签到,获得积分10
刚刚
REN关闭了REN文献求助
1秒前
好运锦鲤完成签到 ,获得积分10
1秒前
美有姬完成签到,获得积分10
2秒前
万能图书馆应助何博士采纳,获得10
2秒前
科研通AI2S应助蘑菇采纳,获得10
2秒前
一平发布了新的文献求助10
3秒前
王一博完成签到,获得积分10
3秒前
4秒前
nihil完成签到,获得积分10
4秒前
活力的泥猴桃完成签到 ,获得积分10
5秒前
5秒前
6秒前
obito完成签到,获得积分10
6秒前
娜行发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
Ck完成签到,获得积分10
8秒前
烦烦完成签到 ,获得积分10
9秒前
百宝发布了新的文献求助10
10秒前
jiangnan发布了新的文献求助10
10秒前
Sev完成签到,获得积分10
10秒前
10秒前
可耐的乘风完成签到,获得积分10
10秒前
FIN应助obito采纳,获得30
11秒前
啾啾发布了新的文献求助10
11秒前
爱学习的向日葵完成签到,获得积分10
12秒前
12秒前
华仔应助泛泛之交采纳,获得10
13秒前
雪123发布了新的文献求助10
13秒前
13秒前
14秒前
charon发布了新的文献求助10
14秒前
凶狠的食铁兽完成签到,获得积分10
14秒前
星辰大海应助花花啊采纳,获得10
14秒前
华仔应助liuyingke采纳,获得10
14秒前
HEIKU应助还不如瞎写采纳,获得10
15秒前
liuliumei发布了新的文献求助30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672