Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast‐Enhanced MRI

医学 磁共振成像 乳房磁振造影 淋巴血管侵犯 无线电技术 接收机工作特性 动态增强MRI 放射科 逻辑回归 人口 乳腺癌 核医学 癌症 乳腺摄影术 转移 内科学 环境卫生
作者
Xiuqi Yang,Xiaohong Fan,Shanyue Lin,Yingjun Zhou,Haibo Liu,Xuefei Wang,Zhichao Zuo,Zeng Ying
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (6): 2238-2249 被引量:15
标识
DOI:10.1002/jmri.29060
摘要

Background Assessment of lymphovascular invasion (LVI) in breast cancer (BC) primarily relies on preoperative needle biopsy. There is an urgent need to develop a non‐invasive assessment method. Purpose To develop an effective model to assess the LVI status in patients with BC using magnetic resonance imaging morphological features (MRI‐MF), Radiomics, and deep learning (DL) approaches based on dynamic contrast‐enhanced MRI (DCE‐MRI). Study Type Cross‐sectional retrospective cohort study. Population The study included 206 BC patients, with 136 in the training set [97 LVI(−) and 39 LVI(+) cases; median age: 51.5 years] and 70 in the test set [52 LVI(−) and 18 LVI(+) cases; median age: 48 years]. Field Strength/Sequence 1.5 T/T1‐weighted images, fat‐suppressed T2‐weighted images, diffusion‐weighted imaging (DWI), and DCE‐MRI. Assessment The MRI‐MF model was developed with conventional MR features using logistic analyses. The Radiomic feature extraction process involved collecting data from categorized DCE‐MRI datasets, specifically the first and second post‐contrast images (A1 and A2). Next, a DL model was implemented to determine LVI. Finally, we established a joint diagnosis model by combining the MRI‐MF, Radiomics, and DL approaches. Statistical Tests Diagnostic performance was compared using receiver operating characteristic curve analysis, confusion matrix, and decision curve analysis. Results Rim sign and peritumoral edema features were used to develop the MRI‐MF model, while six Radiomics signature from the A1 and A2 images were used for the Radiomics model. The joint model (MRI‐MF + Radiomics + DL models) achieved the highest accuracy (area under the curve [AUC] = 0.857), being significantly superior to the MRI‐MF (AUC = 0.724), Radiomics (AUC = 0.736), or DL (AUC = 0.740) model. Furthermore, it also outperformed the pairwise combination models: Radiomics + MRI‐MF (AUC = 0.796), DL + MRI‐MF (AUC = 0.796), or DL + Radiomics (AUC = 0.826). Data Conclusion The joint model incorporating MRI‐MF, Radiomics, and DL approaches can effectively determine the LVI status in patients with BC before surgery. Level of Evidence 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
醉熏的天薇完成签到,获得积分10
刚刚
csy发布了新的文献求助10
1秒前
英姑应助壮观的菠萝采纳,获得10
3秒前
Akim应助tcf采纳,获得10
3秒前
5秒前
Owen应助ww采纳,获得10
5秒前
hazhuxixi发布了新的文献求助10
5秒前
6秒前
Ezio_sunhao完成签到,获得积分10
6秒前
陈希铭发布了新的文献求助10
7秒前
光的本质完成签到,获得积分20
8秒前
zero完成签到 ,获得积分10
9秒前
佳佳发布了新的文献求助10
10秒前
666应助Lee采纳,获得10
10秒前
10秒前
xusuizi发布了新的文献求助10
10秒前
12秒前
qxy完成签到 ,获得积分10
12秒前
14秒前
14秒前
zuo完成签到,获得积分10
14秒前
专注乌冬面完成签到,获得积分10
14秒前
牛牛眉目发布了新的文献求助10
15秒前
淡淡的绿柳关注了科研通微信公众号
16秒前
16秒前
17秒前
18秒前
weiwei发布了新的文献求助10
19秒前
笑哦发布了新的文献求助10
19秒前
19秒前
跳跳虎发布了新的文献求助10
21秒前
大模型应助俊逸谷云采纳,获得10
21秒前
Erhei发布了新的文献求助10
22秒前
mincey发布了新的文献求助10
22秒前
诺颜爱完成签到,获得积分10
24秒前
Avicii完成签到 ,获得积分0
26秒前
27秒前
慕青应助嗯哼哈哈采纳,获得10
30秒前
Coraline应助念姬采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388