亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of Lymphovascular Invasion in Breast Cancer Using a Combined MRI Morphological Features, Radiomics, and Deep Learning Approach Based on Dynamic Contrast‐Enhanced MRI

医学 磁共振成像 乳房磁振造影 淋巴血管侵犯 无线电技术 接收机工作特性 动态增强MRI 放射科 逻辑回归 乳腺癌 核医学 癌症 乳腺摄影术 转移 内科学
作者
Xiuqi Yang,Xiaohong Fan,Shanyue Lin,Yingjun Zhou,Бо Лю,Xuefei Wang,Zhichao Zuo,Zeng Ying
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:10
标识
DOI:10.1002/jmri.29060
摘要

Background Assessment of lymphovascular invasion (LVI) in breast cancer (BC) primarily relies on preoperative needle biopsy. There is an urgent need to develop a non‐invasive assessment method. Purpose To develop an effective model to assess the LVI status in patients with BC using magnetic resonance imaging morphological features (MRI‐MF), Radiomics, and deep learning (DL) approaches based on dynamic contrast‐enhanced MRI (DCE‐MRI). Study Type Cross‐sectional retrospective cohort study. Population The study included 206 BC patients, with 136 in the training set [97 LVI(−) and 39 LVI(+) cases; median age: 51.5 years] and 70 in the test set [52 LVI(−) and 18 LVI(+) cases; median age: 48 years]. Field Strength/Sequence 1.5 T/T1‐weighted images, fat‐suppressed T2‐weighted images, diffusion‐weighted imaging (DWI), and DCE‐MRI. Assessment The MRI‐MF model was developed with conventional MR features using logistic analyses. The Radiomic feature extraction process involved collecting data from categorized DCE‐MRI datasets, specifically the first and second post‐contrast images (A1 and A2). Next, a DL model was implemented to determine LVI. Finally, we established a joint diagnosis model by combining the MRI‐MF, Radiomics, and DL approaches. Statistical Tests Diagnostic performance was compared using receiver operating characteristic curve analysis, confusion matrix, and decision curve analysis. Results Rim sign and peritumoral edema features were used to develop the MRI‐MF model, while six Radiomics signature from the A1 and A2 images were used for the Radiomics model. The joint model (MRI‐MF + Radiomics + DL models) achieved the highest accuracy (area under the curve [AUC] = 0.857), being significantly superior to the MRI‐MF (AUC = 0.724), Radiomics (AUC = 0.736), or DL (AUC = 0.740) model. Furthermore, it also outperformed the pairwise combination models: Radiomics + MRI‐MF (AUC = 0.796), DL + MRI‐MF (AUC = 0.796), or DL + Radiomics (AUC = 0.826). Data Conclusion The joint model incorporating MRI‐MF, Radiomics, and DL approaches can effectively determine the LVI status in patients with BC before surgery. Level of Evidence 4 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助执着夏山采纳,获得10
11秒前
16秒前
37秒前
48秒前
充电宝应助执着夏山采纳,获得10
51秒前
1分钟前
1分钟前
良辰应助科研通管家采纳,获得10
1分钟前
1分钟前
甜蜜发带完成签到 ,获得积分10
2分钟前
2分钟前
执着夏山发布了新的文献求助10
2分钟前
2分钟前
一墨完成签到,获得积分10
2分钟前
3分钟前
清爽夜雪完成签到,获得积分10
3分钟前
从容栾发布了新的文献求助10
3分钟前
科研搬运工完成签到,获得积分10
3分钟前
无花果应助Demi_Ming采纳,获得10
3分钟前
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
良辰应助科研通管家采纳,获得10
3分钟前
4分钟前
Demi_Ming发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
执着夏山发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
甜梨完成签到,获得积分10
5分钟前
6分钟前
6分钟前
俭朴的大有完成签到,获得积分10
6分钟前
TXZ06完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798061
关于积分的说明 7826588
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527