西维因
代谢物
化学
1-萘酚
色谱法
灵敏度(控制系统)
环境化学
杀虫剂
环境科学
生物化学
有机化学
生物
农学
工程类
电子工程
作者
Min-Ling Liu,Zijian Chen,Xiaoqing Huang,Hong Wang,Jinli Zhao,Yu‐Dong Shen,Lin Luo,Xiao-wei Wen,Bruce D. Hammock,Zhenlin Xu
标识
DOI:10.1016/j.envpol.2023.122265
摘要
The simultaneous determination of carbaryl and its metabolite 1-naphthol is essential for risk assessment of pesticide exposure in agricultural and environmental samples. Herein, several bispecific nanobodies (BsNbs) with different lengths of hydrophilic linkers and junction sites were prepared and characterized for the simultaneous recognition of carbaryl and its metabolite 1-naphthol. It was found that the affinity of BsNbs to the analytes could be regulated by controlling linker length and linking terminal. Additionally, molecular simulation revealed that linker lengths affected the conformation of BsNbs, leading to alteration in sensitivity. The BsNb with G4S linker, named G4S-C-N-VHH, showing good thermal stability and sensitivity was used to develop a bispecific indirect competitive enzyme-linked immunosorbent assay (Bic-ELISA). The assay demonstrated a limit of detection of 0.8 ng/mL for carbaryl and 0.4 ng/mL for 1-naphthol in buffer system. Good recoveries from soil and rice samples were obtained, ranging from 80.0% to 112.7% (carbaryl) and 76.5%-110.8% (1-naphthol), respectively. Taken together, this study firstly provided a BsNb with high sensitivity and efficiency against environmental pesticide and its metabolite, and firstly used molecular dynamics simulation to explore the influence of linker on recognition. The results are valuable for the application of immunoassay with high efficiency in the fields of environment and agriculture.
科研通智能强力驱动
Strongly Powered by AbleSci AI