Development and validation of potential phenotypes of serum electrolyte disturbances in critically ill patients and a Web-based application

医学 表型 稳健性(进化) 病危 聚类分析 重症监护 重症监护医学 内科学 生物信息学 计算机科学 人工智能 生物 生物化学 基因
作者
Wenyan Xiao,Lisha Huang,Heng Guo,Wanjun Liu,Jin Zhang,Yu Liu,Tianfeng Hua,Min Yang
出处
期刊:Journal of Critical Care [Elsevier]
卷期号:82: 154793-154793 被引量:2
标识
DOI:10.1016/j.jcrc.2024.154793
摘要

Electrolyte disturbances are highly heterogeneous and severely affect the prognosis of critically ill patients. Our study was to determine whether data-driven phenotypes of seven electrolytes have prognostic relevance in critically ill patients. We extracted patient information from three large independent public databases, and clustered the electrolyte distribution of ICU patients based on the extreme value, median value and coefficient of variation of electrolytes. Three plausible clinical phenotypes were calculated using K-means clustering algorithm as the basic clustering method. MIMIC-IV was considered a training set, and two others have been designated as verification set. The robustness of the model was then validated from different angles, providing dynamic and interactive visual charts for more detailed characterization of phenotypes. 15,340, 12,445 and 2147 ICU patients with electrolyte records during early ICU stay in MIMIC-IV, eICU-CRD and AmsterdamUMCdb were enrolled. After clustering, three reasonable and interpretable phenotypes are defined as α, β and γ according to the order of clusters. The α and γ phenotype, with significant differences in electrolyte distribution and clinical variables, higher 28-day mortality and longer length of ICU stay (p < 0.001), was further demonstrated by robustness analysis. The α phenotype has significant kidney injury, while the β phenotype has the best prognosis. In addition, the assignment methods of the three phenotypes were developed into a web-based tool for further verification and application. Three different clinical phenotypes were identified that correlated with electrolyte distribution and clinical outcomes. Further validation and characterization of these phenotypes is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帅气善斓应助coffee采纳,获得10
2秒前
俏皮的茗茗完成签到,获得积分20
2秒前
2秒前
Dr.Dream发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
大椒完成签到 ,获得积分10
3秒前
yjj6809完成签到,获得积分10
3秒前
黄少阳发布了新的文献求助10
4秒前
4秒前
怪胎完成签到,获得积分10
4秒前
5秒前
7秒前
PGao发布了新的文献求助10
7秒前
xiaotangyuan发布了新的文献求助20
9秒前
Hello应助AdamHoalcraft采纳,获得10
9秒前
帅气的颜演完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
小航航013完成签到,获得积分10
10秒前
12秒前
12秒前
完美紫易完成签到,获得积分10
13秒前
华仔应助黄少阳采纳,获得10
13秒前
乐观的小鸡完成签到,获得积分10
15秒前
libe应助刘谦毅采纳,获得10
15秒前
简单沛山完成签到,获得积分10
16秒前
16秒前
16秒前
coesius完成签到,获得积分10
16秒前
luor完成签到,获得积分20
17秒前
冷艳的纸鹤完成签到,获得积分10
18秒前
18秒前
搜集达人应助沉静的砖头采纳,获得10
19秒前
Lucas应助残剑月采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
沉默发布了新的文献求助10
19秒前
zhang完成签到,获得积分10
20秒前
21秒前
无敌幸运儿完成签到 ,获得积分10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704813
求助须知:如何正确求助?哪些是违规求助? 5158878
关于积分的说明 15242939
捐赠科研通 4858662
什么是DOI,文献DOI怎么找? 2607392
邀请新用户注册赠送积分活动 1558393
关于科研通互助平台的介绍 1516137