Development and validation of potential phenotypes of serum electrolyte disturbances in critically ill patients and a Web-based application

医学 表型 稳健性(进化) 病危 聚类分析 重症监护 重症监护医学 内科学 生物信息学 计算机科学 人工智能 生物 生物化学 基因
作者
Wenyan Xiao,Lisha Huang,Heng Guo,Wanjun Liu,Jin Zhang,Yu Liu,Tianfeng Hua,Min Yang
出处
期刊:Journal of Critical Care [Elsevier]
卷期号:82: 154793-154793 被引量:2
标识
DOI:10.1016/j.jcrc.2024.154793
摘要

Electrolyte disturbances are highly heterogeneous and severely affect the prognosis of critically ill patients. Our study was to determine whether data-driven phenotypes of seven electrolytes have prognostic relevance in critically ill patients. We extracted patient information from three large independent public databases, and clustered the electrolyte distribution of ICU patients based on the extreme value, median value and coefficient of variation of electrolytes. Three plausible clinical phenotypes were calculated using K-means clustering algorithm as the basic clustering method. MIMIC-IV was considered a training set, and two others have been designated as verification set. The robustness of the model was then validated from different angles, providing dynamic and interactive visual charts for more detailed characterization of phenotypes. 15,340, 12,445 and 2147 ICU patients with electrolyte records during early ICU stay in MIMIC-IV, eICU-CRD and AmsterdamUMCdb were enrolled. After clustering, three reasonable and interpretable phenotypes are defined as α, β and γ according to the order of clusters. The α and γ phenotype, with significant differences in electrolyte distribution and clinical variables, higher 28-day mortality and longer length of ICU stay (p < 0.001), was further demonstrated by robustness analysis. The α phenotype has significant kidney injury, while the β phenotype has the best prognosis. In addition, the assignment methods of the three phenotypes were developed into a web-based tool for further verification and application. Three different clinical phenotypes were identified that correlated with electrolyte distribution and clinical outcomes. Further validation and characterization of these phenotypes is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助尕辉采纳,获得10
1秒前
椰子完成签到 ,获得积分10
2秒前
2秒前
2秒前
汉堡包应助悟空采纳,获得10
2秒前
CC完成签到 ,获得积分10
2秒前
甜美板栗完成签到,获得积分10
2秒前
阔达的岱周完成签到,获得积分10
3秒前
李爱国应助勤奋的狗采纳,获得10
3秒前
大气的惜天完成签到,获得积分10
4秒前
斯文败类应助TTRRCEB采纳,获得10
4秒前
Angie完成签到,获得积分10
5秒前
星辰大海应助xixi采纳,获得10
5秒前
6秒前
6秒前
6秒前
独特元蝶发布了新的文献求助10
6秒前
研友_Z33EGZ发布了新的文献求助100
6秒前
领导范儿应助TRACEY采纳,获得30
7秒前
7秒前
lvwubin发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
mmm发布了新的文献求助10
9秒前
9秒前
10秒前
优美紫槐发布了新的文献求助10
11秒前
111发布了新的文献求助10
12秒前
13秒前
在水一方应助医学小渣渣采纳,获得10
13秒前
温谷发布了新的文献求助10
13秒前
李爱国应助lllllljx采纳,获得10
13秒前
李X发布了新的文献求助10
14秒前
qee发布了新的文献求助10
14秒前
15秒前
GuMingyang发布了新的文献求助10
15秒前
CipherSage应助英勇羿采纳,获得10
16秒前
16秒前
chenhoe1212完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663406
求助须知:如何正确求助?哪些是违规求助? 4849401
关于积分的说明 15103934
捐赠科研通 4821706
什么是DOI,文献DOI怎么找? 2580884
邀请新用户注册赠送积分活动 1535065
关于科研通互助平台的介绍 1493426