Development and validation of potential phenotypes of serum electrolyte disturbances in critically ill patients and a Web-based application

医学 表型 稳健性(进化) 病危 聚类分析 重症监护 重症监护医学 内科学 生物信息学 计算机科学 人工智能 生物 生物化学 基因
作者
Wenyan Xiao,Lisha Huang,Heng Guo,Wanjun Liu,Jin Zhang,Yu Liu,Tianfeng Hua,Min Yang
出处
期刊:Journal of Critical Care [Elsevier]
卷期号:82: 154793-154793 被引量:2
标识
DOI:10.1016/j.jcrc.2024.154793
摘要

Electrolyte disturbances are highly heterogeneous and severely affect the prognosis of critically ill patients. Our study was to determine whether data-driven phenotypes of seven electrolytes have prognostic relevance in critically ill patients. We extracted patient information from three large independent public databases, and clustered the electrolyte distribution of ICU patients based on the extreme value, median value and coefficient of variation of electrolytes. Three plausible clinical phenotypes were calculated using K-means clustering algorithm as the basic clustering method. MIMIC-IV was considered a training set, and two others have been designated as verification set. The robustness of the model was then validated from different angles, providing dynamic and interactive visual charts for more detailed characterization of phenotypes. 15,340, 12,445 and 2147 ICU patients with electrolyte records during early ICU stay in MIMIC-IV, eICU-CRD and AmsterdamUMCdb were enrolled. After clustering, three reasonable and interpretable phenotypes are defined as α, β and γ according to the order of clusters. The α and γ phenotype, with significant differences in electrolyte distribution and clinical variables, higher 28-day mortality and longer length of ICU stay (p < 0.001), was further demonstrated by robustness analysis. The α phenotype has significant kidney injury, while the β phenotype has the best prognosis. In addition, the assignment methods of the three phenotypes were developed into a web-based tool for further verification and application. Three different clinical phenotypes were identified that correlated with electrolyte distribution and clinical outcomes. Further validation and characterization of these phenotypes is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠呆呆鱼完成签到 ,获得积分10
刚刚
科研通AI6应助自由的筝采纳,获得10
1秒前
yoimiya发布了新的文献求助10
1秒前
康米完成签到,获得积分10
1秒前
二掌柜完成签到 ,获得积分10
1秒前
边瑞明发布了新的文献求助10
2秒前
2秒前
小二郎应助花花子采纳,获得30
3秒前
啦啦啦发布了新的文献求助10
4秒前
5秒前
TheSail完成签到,获得积分10
5秒前
dkun完成签到,获得积分10
5秒前
6秒前
嘻嘻发布了新的文献求助30
6秒前
7秒前
勤恳问薇完成签到 ,获得积分10
7秒前
znq051210完成签到,获得积分20
7秒前
FleeToMars完成签到 ,获得积分10
9秒前
播种太阳发布了新的文献求助10
10秒前
慕青应助坦率芷天采纳,获得10
12秒前
天天快乐应助顺利一江采纳,获得10
13秒前
李健的小迷弟应助边瑞明采纳,获得10
13秒前
1461644768发布了新的文献求助10
13秒前
CodeCraft应助啦啦啦采纳,获得10
14秒前
在水一方应助小秋采纳,获得10
14秒前
15秒前
15秒前
Changfh完成签到 ,获得积分10
15秒前
16秒前
bkagyin应助huxiansen采纳,获得10
17秒前
18秒前
1461644768完成签到,获得积分10
19秒前
科研通AI6应助naiyantang采纳,获得10
19秒前
wqmdd发布了新的文献求助10
22秒前
22秒前
打发打发的发到付电费完成签到,获得积分10
23秒前
甜蜜凡波发布了新的文献求助10
23秒前
小板栗完成签到,获得积分10
24秒前
酷波er应助播种太阳采纳,获得10
25秒前
26秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457501
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291930
捐赠科研通 4488544
什么是DOI,文献DOI怎么找? 2458577
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424244