Development and validation of potential phenotypes of serum electrolyte disturbances in critically ill patients and a Web-based application

医学 表型 稳健性(进化) 病危 聚类分析 重症监护 重症监护医学 内科学 生物信息学 计算机科学 人工智能 生物 生物化学 基因
作者
Wenyan Xiao,Lisha Huang,Heng Guo,Wanjun Liu,Jin Zhang,Yu Liu,Tianfeng Hua,Min Yang
出处
期刊:Journal of Critical Care [Elsevier]
卷期号:82: 154793-154793 被引量:2
标识
DOI:10.1016/j.jcrc.2024.154793
摘要

Electrolyte disturbances are highly heterogeneous and severely affect the prognosis of critically ill patients. Our study was to determine whether data-driven phenotypes of seven electrolytes have prognostic relevance in critically ill patients. We extracted patient information from three large independent public databases, and clustered the electrolyte distribution of ICU patients based on the extreme value, median value and coefficient of variation of electrolytes. Three plausible clinical phenotypes were calculated using K-means clustering algorithm as the basic clustering method. MIMIC-IV was considered a training set, and two others have been designated as verification set. The robustness of the model was then validated from different angles, providing dynamic and interactive visual charts for more detailed characterization of phenotypes. 15,340, 12,445 and 2147 ICU patients with electrolyte records during early ICU stay in MIMIC-IV, eICU-CRD and AmsterdamUMCdb were enrolled. After clustering, three reasonable and interpretable phenotypes are defined as α, β and γ according to the order of clusters. The α and γ phenotype, with significant differences in electrolyte distribution and clinical variables, higher 28-day mortality and longer length of ICU stay (p < 0.001), was further demonstrated by robustness analysis. The α phenotype has significant kidney injury, while the β phenotype has the best prognosis. In addition, the assignment methods of the three phenotypes were developed into a web-based tool for further verification and application. Three different clinical phenotypes were identified that correlated with electrolyte distribution and clinical outcomes. Further validation and characterization of these phenotypes is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆尘发布了新的文献求助10
刚刚
YH发布了新的文献求助10
刚刚
火星上的一斩完成签到 ,获得积分10
1秒前
爱lx完成签到,获得积分10
1秒前
小马甲应助无敌小神腿采纳,获得10
1秒前
爱撒娇的大开完成签到 ,获得积分10
1秒前
2秒前
饱满的大碗完成签到 ,获得积分10
2秒前
3秒前
3秒前
感动归尘发布了新的文献求助10
3秒前
3秒前
CipherSage应助LJR采纳,获得10
3秒前
小怪完成签到,获得积分10
3秒前
4秒前
4秒前
tao完成签到 ,获得积分10
4秒前
祝大家顺顺利利毕业完成签到,获得积分10
4秒前
大个应助ATOM采纳,获得10
4秒前
研友_VZG7GZ应助李天王采纳,获得10
4秒前
流川封完成签到,获得积分10
4秒前
鑫渊完成签到,获得积分10
4秒前
从容如曼完成签到,获得积分10
5秒前
5秒前
科研通AI6应助酷酷的紫南采纳,获得10
5秒前
木泽完成签到,获得积分10
5秒前
Lucas应助淳之风采纳,获得10
5秒前
于于发布了新的文献求助100
6秒前
平常的如凡完成签到,获得积分10
6秒前
6秒前
毕业完成签到,获得积分10
6秒前
小仙女发布了新的文献求助30
6秒前
20050437发布了新的文献求助10
6秒前
msuyue完成签到,获得积分10
6秒前
饼大王完成签到,获得积分10
7秒前
忐忑的蓝发布了新的文献求助10
7秒前
EKo完成签到,获得积分10
7秒前
张佳军发布了新的文献求助10
8秒前
陈昇发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402368
求助须知:如何正确求助?哪些是违规求助? 4520959
关于积分的说明 14083248
捐赠科研通 4435011
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426678
关于科研通互助平台的介绍 1405432