Development and validation of potential phenotypes of serum electrolyte disturbances in critically ill patients and a Web-based application

医学 表型 稳健性(进化) 病危 聚类分析 重症监护 重症监护医学 内科学 生物信息学 计算机科学 人工智能 生物 生物化学 基因
作者
Wenyan Xiao,Lisha Huang,Heng Guo,Wanjun Liu,Jin Zhang,Yu Liu,Tianfeng Hua,Min Yang
出处
期刊:Journal of Critical Care [Elsevier BV]
卷期号:82: 154793-154793 被引量:2
标识
DOI:10.1016/j.jcrc.2024.154793
摘要

Electrolyte disturbances are highly heterogeneous and severely affect the prognosis of critically ill patients. Our study was to determine whether data-driven phenotypes of seven electrolytes have prognostic relevance in critically ill patients. We extracted patient information from three large independent public databases, and clustered the electrolyte distribution of ICU patients based on the extreme value, median value and coefficient of variation of electrolytes. Three plausible clinical phenotypes were calculated using K-means clustering algorithm as the basic clustering method. MIMIC-IV was considered a training set, and two others have been designated as verification set. The robustness of the model was then validated from different angles, providing dynamic and interactive visual charts for more detailed characterization of phenotypes. 15,340, 12,445 and 2147 ICU patients with electrolyte records during early ICU stay in MIMIC-IV, eICU-CRD and AmsterdamUMCdb were enrolled. After clustering, three reasonable and interpretable phenotypes are defined as α, β and γ according to the order of clusters. The α and γ phenotype, with significant differences in electrolyte distribution and clinical variables, higher 28-day mortality and longer length of ICU stay (p < 0.001), was further demonstrated by robustness analysis. The α phenotype has significant kidney injury, while the β phenotype has the best prognosis. In addition, the assignment methods of the three phenotypes were developed into a web-based tool for further verification and application. Three different clinical phenotypes were identified that correlated with electrolyte distribution and clinical outcomes. Further validation and characterization of these phenotypes is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姜菲菲完成签到,获得积分10
1秒前
zero桥完成签到,获得积分10
1秒前
哈密哈密完成签到,获得积分10
3秒前
等待吐司应助潇洒烨磊采纳,获得10
3秒前
夫列杰尼发布了新的文献求助30
3秒前
gxz发布了新的文献求助10
3秒前
米九完成签到 ,获得积分10
3秒前
LCL完成签到,获得积分10
3秒前
ryan1300完成签到 ,获得积分10
4秒前
小星完成签到 ,获得积分10
5秒前
萌萌完成签到,获得积分10
5秒前
小凤姑娘完成签到,获得积分10
5秒前
12334完成签到,获得积分10
5秒前
David完成签到 ,获得积分10
6秒前
山君发布了新的文献求助10
6秒前
假装有昵称完成签到,获得积分10
7秒前
深情安青应助刘大倪采纳,获得10
7秒前
pebble完成签到,获得积分10
9秒前
脑洞疼应助violetlishu采纳,获得10
11秒前
十二发布了新的文献求助30
12秒前
gxz完成签到,获得积分10
13秒前
lenaimiao完成签到,获得积分10
13秒前
坦率无剑完成签到,获得积分10
13秒前
大鲨鱼完成签到 ,获得积分10
14秒前
16秒前
吧嗒蹭完成签到 ,获得积分10
18秒前
搜集达人应助gxz采纳,获得10
18秒前
MrCoolWu完成签到,获得积分10
18秒前
小潘同学完成签到 ,获得积分10
18秒前
19秒前
清新的易真完成签到,获得积分10
19秒前
贵贵完成签到,获得积分10
20秒前
天天完成签到,获得积分10
20秒前
欢呼的雨琴完成签到 ,获得积分10
20秒前
努力成为科研大佬完成签到,获得积分10
23秒前
Y2完成签到 ,获得积分10
23秒前
嘻嘻哈哈应助KeLiang采纳,获得10
24秒前
嘻嘻哈哈应助苏苏采纳,获得10
24秒前
默默平文完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256478
求助须知:如何正确求助?哪些是违规求助? 4418730
关于积分的说明 13753082
捐赠科研通 4291913
什么是DOI,文献DOI怎么找? 2355182
邀请新用户注册赠送积分活动 1351622
关于科研通互助平台的介绍 1312330