A Dual-branch Model for Early Detection of Alzheimer’s Disease Using Resting-State fMRI

静息状态功能磁共振成像 对偶(语法数字) 计算机科学 疾病 神经科学 心理学 医学 内科学 艺术 文学类
作者
Yixuan Wang,Wei Li
标识
DOI:10.1109/iaeac59436.2024.10503940
摘要

Alzheimer's disease (AD) is the most prevalent form of dementia, and early diagnosis is crucial for delaying and treating AD. Resting-state functional magnetic resonance imaging (rs-fMRI), a widely used medical imaging technique, offers rich temporal and spatial data, which has led researchers to explore various feature extraction methods based on rs-fMRI images for AD identification. However, the related work still suffers from insufficient utilization of temporal and spatial information which leads to unsatisfactory early diagnosis. In this study, we propose a dual-branch fusion model to extract spatial-temporal features from rs-fMRI images. Our proposed model can extract temporal features at different levels. We developed a Class Activation Sequence (CAS) branch, which is a structure that emphasizes the function of each temporal node throughout the whole time series. Additionally, we created a time-domain local branch for local feature extraction. Further, we designed a fusion module for the model to describe temporal contextual relationships and fuse features at various levels. We tested the performance of the model on the ADNI dataset, and the experimental results show that compared with other algorithms, the dual-branch fusion model achieves higher classification accuracy on several classification tasks including early diagnosis, which proves the advantage of the dual-branch fusion model in temporal and spatial feature extraction for rs-fMRI images, and our work also provides a foundation for the temporal domain characterization of rs-fMRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红豆抹茶完成签到,获得积分10
1秒前
1秒前
二二发布了新的文献求助10
1秒前
1秒前
科研通AI2S应助半夜炒茄子采纳,获得10
2秒前
眯眯眼的笑完成签到,获得积分10
2秒前
Neo完成签到,获得积分10
2秒前
寒冷的天亦完成签到,获得积分10
2秒前
小羊医生发布了新的文献求助10
3秒前
3秒前
冰冰子完成签到,获得积分10
4秒前
zx发布了新的文献求助10
4秒前
wulin发布了新的文献求助10
4秒前
明亮雨真发布了新的文献求助150
4秒前
4秒前
5秒前
爱听歌的糖豆完成签到,获得积分10
5秒前
CR7应助飞羽采纳,获得20
5秒前
hotcas完成签到,获得积分10
5秒前
6秒前
6秒前
科研通AI2S应助奶油泡fu采纳,获得10
7秒前
Camellia完成签到,获得积分10
7秒前
阿越应助江月年采纳,获得10
8秒前
8秒前
8秒前
Hello应助嗡嗡嗡采纳,获得10
8秒前
yzbbb发布了新的文献求助10
9秒前
TRY完成签到,获得积分10
9秒前
CipherSage应助眯眯眼的笑采纳,获得10
9秒前
奇拉维特完成签到 ,获得积分10
9秒前
小叶子发布了新的文献求助10
9秒前
9秒前
诚心的砖头完成签到,获得积分20
10秒前
10秒前
科研通AI6应助小羊医生采纳,获得10
10秒前
11秒前
领导范儿应助在写了采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615406
求助须知:如何正确求助?哪些是违规求助? 4019207
关于积分的说明 12441329
捐赠科研通 3702203
什么是DOI,文献DOI怎么找? 2041500
邀请新用户注册赠送积分活动 1074170
科研通“疑难数据库(出版商)”最低求助积分说明 957802