A Dual-branch Model for Early Detection of Alzheimer’s Disease Using Resting-State fMRI

静息状态功能磁共振成像 对偶(语法数字) 计算机科学 疾病 神经科学 心理学 医学 内科学 艺术 文学类
作者
Yixuan Wang,Wei Li
标识
DOI:10.1109/iaeac59436.2024.10503940
摘要

Alzheimer's disease (AD) is the most prevalent form of dementia, and early diagnosis is crucial for delaying and treating AD. Resting-state functional magnetic resonance imaging (rs-fMRI), a widely used medical imaging technique, offers rich temporal and spatial data, which has led researchers to explore various feature extraction methods based on rs-fMRI images for AD identification. However, the related work still suffers from insufficient utilization of temporal and spatial information which leads to unsatisfactory early diagnosis. In this study, we propose a dual-branch fusion model to extract spatial-temporal features from rs-fMRI images. Our proposed model can extract temporal features at different levels. We developed a Class Activation Sequence (CAS) branch, which is a structure that emphasizes the function of each temporal node throughout the whole time series. Additionally, we created a time-domain local branch for local feature extraction. Further, we designed a fusion module for the model to describe temporal contextual relationships and fuse features at various levels. We tested the performance of the model on the ADNI dataset, and the experimental results show that compared with other algorithms, the dual-branch fusion model achieves higher classification accuracy on several classification tasks including early diagnosis, which proves the advantage of the dual-branch fusion model in temporal and spatial feature extraction for rs-fMRI images, and our work also provides a foundation for the temporal domain characterization of rs-fMRI images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亓大大完成签到,获得积分10
刚刚
善学以致用应助猪猪hero采纳,获得10
刚刚
1秒前
聪明的鞅发布了新的文献求助10
2秒前
共享精神应助love采纳,获得10
2秒前
2秒前
方舟完成签到,获得积分10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
3秒前
myfayewang应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
核桃应助科研通管家采纳,获得10
3秒前
3秒前
迪歪歪应助E9采纳,获得10
3秒前
4秒前
充电宝应助janice采纳,获得10
4秒前
serein完成签到,获得积分10
5秒前
Vivian发布了新的文献求助10
6秒前
星辰大海应助Pluto采纳,获得10
6秒前
田様应助李李采纳,获得10
7秒前
7秒前
科研通AI6应助kei采纳,获得10
7秒前
下酒菜完成签到,获得积分10
7秒前
神勇荷花发布了新的文献求助10
8秒前
科研通AI6应助愤怒的山兰采纳,获得150
8秒前
8秒前
Lucky完成签到 ,获得积分10
8秒前
asdwind完成签到,获得积分10
8秒前
英姑应助放荡不羁采纳,获得10
9秒前
科研通AI6应助渴望者采纳,获得10
9秒前
坚定的路人完成签到,获得积分10
10秒前
koritto发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
accepted完成签到 ,获得积分10
13秒前
夜将尽应助平淡的问安采纳,获得10
14秒前
凡千灵溪完成签到 ,获得积分10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781