A Dual-branch Model for Early Detection of Alzheimer’s Disease Using Resting-State fMRI

静息状态功能磁共振成像 对偶(语法数字) 计算机科学 疾病 神经科学 心理学 医学 内科学 艺术 文学类
作者
Yixuan Wang,Wei Li
标识
DOI:10.1109/iaeac59436.2024.10503940
摘要

Alzheimer's disease (AD) is the most prevalent form of dementia, and early diagnosis is crucial for delaying and treating AD. Resting-state functional magnetic resonance imaging (rs-fMRI), a widely used medical imaging technique, offers rich temporal and spatial data, which has led researchers to explore various feature extraction methods based on rs-fMRI images for AD identification. However, the related work still suffers from insufficient utilization of temporal and spatial information which leads to unsatisfactory early diagnosis. In this study, we propose a dual-branch fusion model to extract spatial-temporal features from rs-fMRI images. Our proposed model can extract temporal features at different levels. We developed a Class Activation Sequence (CAS) branch, which is a structure that emphasizes the function of each temporal node throughout the whole time series. Additionally, we created a time-domain local branch for local feature extraction. Further, we designed a fusion module for the model to describe temporal contextual relationships and fuse features at various levels. We tested the performance of the model on the ADNI dataset, and the experimental results show that compared with other algorithms, the dual-branch fusion model achieves higher classification accuracy on several classification tasks including early diagnosis, which proves the advantage of the dual-branch fusion model in temporal and spatial feature extraction for rs-fMRI images, and our work also provides a foundation for the temporal domain characterization of rs-fMRI images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小铭同学关注了科研通微信公众号
刚刚
谢瑞恒完成签到,获得积分10
刚刚
刚刚
淇奥完成签到 ,获得积分10
刚刚
天天快乐应助Fuao采纳,获得10
刚刚
dz618完成签到,获得积分10
1秒前
1秒前
1秒前
852应助葡萄冻冻采纳,获得10
1秒前
Ww发布了新的文献求助10
2秒前
小李呀发布了新的文献求助10
2秒前
3秒前
wangqinlei发布了新的文献求助10
3秒前
3秒前
4秒前
欢呼的冷亦完成签到,获得积分10
4秒前
4秒前
不明生物发布了新的文献求助10
4秒前
dxxcshin完成签到,获得积分10
5秒前
852应助清腾采纳,获得10
5秒前
5秒前
优雅的砖头完成签到,获得积分10
5秒前
花开应助kljlk采纳,获得10
5秒前
5秒前
栗子发布了新的文献求助10
6秒前
6秒前
不安的大米完成签到,获得积分10
6秒前
wangqinlei完成签到,获得积分10
7秒前
7秒前
www发布了新的文献求助10
7秒前
jc_scholar发布了新的文献求助20
8秒前
8秒前
8秒前
科研小垃圾完成签到,获得积分10
9秒前
9秒前
璐璐核桃露给璐璐核桃露的求助进行了留言
9秒前
10秒前
科研小白发布了新的文献求助10
10秒前
YY完成签到,获得积分10
10秒前
H星科23456发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721