A Dual-branch Model for Early Detection of Alzheimer’s Disease Using Resting-State fMRI

静息状态功能磁共振成像 对偶(语法数字) 计算机科学 疾病 神经科学 心理学 医学 内科学 艺术 文学类
作者
Yixuan Wang,Wei Li
标识
DOI:10.1109/iaeac59436.2024.10503940
摘要

Alzheimer's disease (AD) is the most prevalent form of dementia, and early diagnosis is crucial for delaying and treating AD. Resting-state functional magnetic resonance imaging (rs-fMRI), a widely used medical imaging technique, offers rich temporal and spatial data, which has led researchers to explore various feature extraction methods based on rs-fMRI images for AD identification. However, the related work still suffers from insufficient utilization of temporal and spatial information which leads to unsatisfactory early diagnosis. In this study, we propose a dual-branch fusion model to extract spatial-temporal features from rs-fMRI images. Our proposed model can extract temporal features at different levels. We developed a Class Activation Sequence (CAS) branch, which is a structure that emphasizes the function of each temporal node throughout the whole time series. Additionally, we created a time-domain local branch for local feature extraction. Further, we designed a fusion module for the model to describe temporal contextual relationships and fuse features at various levels. We tested the performance of the model on the ADNI dataset, and the experimental results show that compared with other algorithms, the dual-branch fusion model achieves higher classification accuracy on several classification tasks including early diagnosis, which proves the advantage of the dual-branch fusion model in temporal and spatial feature extraction for rs-fMRI images, and our work also provides a foundation for the temporal domain characterization of rs-fMRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助dd采纳,获得10
刚刚
Chan0501关注了科研通微信公众号
1秒前
1秒前
研友_LMNjkn发布了新的文献求助10
1秒前
tjunqi完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助下课了吧采纳,获得10
3秒前
3秒前
3秒前
好的完成签到,获得积分20
4秒前
蜂蜜不是糖完成签到 ,获得积分10
4秒前
狮子最爱吃芒果完成签到,获得积分10
4秒前
5秒前
6秒前
尘雾完成签到,获得积分10
6秒前
澜生发布了新的文献求助10
7秒前
leekle完成签到,获得积分10
8秒前
shengChen发布了新的文献求助10
8秒前
自信鞯发布了新的文献求助10
9秒前
江北小赵完成签到,获得积分10
9秒前
9秒前
9秒前
clock完成签到 ,获得积分10
9秒前
虫二先生完成签到 ,获得积分10
9秒前
甜甜的难敌完成签到,获得积分10
10秒前
10秒前
11秒前
小潘同学完成签到,获得积分10
11秒前
11秒前
科研通AI5应助传统的海露采纳,获得10
12秒前
学术刘亦菲完成签到,获得积分10
12秒前
成就的烧鹅完成签到,获得积分20
12秒前
13秒前
dd发布了新的文献求助10
13秒前
luoshi应助leon采纳,获得30
14秒前
14秒前
wang完成签到,获得积分10
14秒前
可爱的函函应助hu采纳,获得10
14秒前
14秒前
我测你码关注了科研通微信公众号
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794