A Dual-branch Model for Early Detection of Alzheimer’s Disease Using Resting-State fMRI

静息状态功能磁共振成像 对偶(语法数字) 计算机科学 疾病 神经科学 心理学 医学 内科学 艺术 文学类
作者
Yixuan Wang,Wei Li
标识
DOI:10.1109/iaeac59436.2024.10503940
摘要

Alzheimer's disease (AD) is the most prevalent form of dementia, and early diagnosis is crucial for delaying and treating AD. Resting-state functional magnetic resonance imaging (rs-fMRI), a widely used medical imaging technique, offers rich temporal and spatial data, which has led researchers to explore various feature extraction methods based on rs-fMRI images for AD identification. However, the related work still suffers from insufficient utilization of temporal and spatial information which leads to unsatisfactory early diagnosis. In this study, we propose a dual-branch fusion model to extract spatial-temporal features from rs-fMRI images. Our proposed model can extract temporal features at different levels. We developed a Class Activation Sequence (CAS) branch, which is a structure that emphasizes the function of each temporal node throughout the whole time series. Additionally, we created a time-domain local branch for local feature extraction. Further, we designed a fusion module for the model to describe temporal contextual relationships and fuse features at various levels. We tested the performance of the model on the ADNI dataset, and the experimental results show that compared with other algorithms, the dual-branch fusion model achieves higher classification accuracy on several classification tasks including early diagnosis, which proves the advantage of the dual-branch fusion model in temporal and spatial feature extraction for rs-fMRI images, and our work also provides a foundation for the temporal domain characterization of rs-fMRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zn315315完成签到,获得积分10
2秒前
3秒前
啦啦啦发布了新的文献求助10
3秒前
柴彤淑完成签到,获得积分10
4秒前
4秒前
坚定不移发布了新的文献求助10
5秒前
5秒前
6秒前
忽忽完成签到,获得积分10
7秒前
limay完成签到 ,获得积分20
7秒前
kuku完成签到,获得积分10
7秒前
完美世界应助Yuan采纳,获得10
7秒前
Sinsoladad发布了新的文献求助10
8秒前
XY发布了新的文献求助10
9秒前
雪花糕完成签到 ,获得积分10
9秒前
9秒前
Sepvvvvirtue发布了新的文献求助10
9秒前
打地鼠工人完成签到,获得积分10
10秒前
大气的杨完成签到 ,获得积分10
11秒前
科研通AI2S应助tianzml0采纳,获得10
11秒前
淡定的初夏给Zzz的求助进行了留言
11秒前
崔佳慧发布了新的文献求助10
12秒前
jenningseastera完成签到,获得积分0
12秒前
12秒前
LLL发布了新的文献求助20
13秒前
liu1223456完成签到,获得积分10
13秒前
于yu完成签到 ,获得积分10
13秒前
充电宝应助llflame采纳,获得10
15秒前
啦啦啦发布了新的文献求助10
17秒前
微风打了烊完成签到 ,获得积分10
18秒前
雪城完成签到,获得积分10
19秒前
tianzml0应助panda采纳,获得200
20秒前
杨明智完成签到 ,获得积分10
21秒前
科目三应助lxm采纳,获得10
21秒前
笑点低雅旋完成签到 ,获得积分10
22秒前
Sinsoladad完成签到,获得积分10
22秒前
23秒前
23秒前
脑洞疼应助旺仔采纳,获得10
25秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379399
求助须知:如何正确求助?哪些是违规求助? 4503761
关于积分的说明 14016516
捐赠科研通 4412511
什么是DOI,文献DOI怎么找? 2423853
邀请新用户注册赠送积分活动 1416678
关于科研通互助平台的介绍 1394244