亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Dual-branch Model for Early Detection of Alzheimer’s Disease Using Resting-State fMRI

静息状态功能磁共振成像 对偶(语法数字) 计算机科学 疾病 神经科学 心理学 医学 内科学 艺术 文学类
作者
Yixuan Wang,Wei Li
标识
DOI:10.1109/iaeac59436.2024.10503940
摘要

Alzheimer's disease (AD) is the most prevalent form of dementia, and early diagnosis is crucial for delaying and treating AD. Resting-state functional magnetic resonance imaging (rs-fMRI), a widely used medical imaging technique, offers rich temporal and spatial data, which has led researchers to explore various feature extraction methods based on rs-fMRI images for AD identification. However, the related work still suffers from insufficient utilization of temporal and spatial information which leads to unsatisfactory early diagnosis. In this study, we propose a dual-branch fusion model to extract spatial-temporal features from rs-fMRI images. Our proposed model can extract temporal features at different levels. We developed a Class Activation Sequence (CAS) branch, which is a structure that emphasizes the function of each temporal node throughout the whole time series. Additionally, we created a time-domain local branch for local feature extraction. Further, we designed a fusion module for the model to describe temporal contextual relationships and fuse features at various levels. We tested the performance of the model on the ADNI dataset, and the experimental results show that compared with other algorithms, the dual-branch fusion model achieves higher classification accuracy on several classification tasks including early diagnosis, which proves the advantage of the dual-branch fusion model in temporal and spatial feature extraction for rs-fMRI images, and our work also provides a foundation for the temporal domain characterization of rs-fMRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助木木采纳,获得10
7秒前
希望天下0贩的0应助AAA1798采纳,获得10
13秒前
木子发布了新的文献求助10
14秒前
corleeang完成签到 ,获得积分10
21秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
唐泽雪穗应助科研通管家采纳,获得10
29秒前
唐泽雪穗应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
29秒前
唐泽雪穗应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
CATH完成签到 ,获得积分10
39秒前
44秒前
AAA1798发布了新的文献求助10
51秒前
拓跋凌波完成签到,获得积分10
52秒前
poser完成签到,获得积分10
53秒前
53秒前
斯文败类应助徐矜采纳,获得10
54秒前
1分钟前
Owen应助感性的靖仇采纳,获得10
1分钟前
1分钟前
浮游应助AAA1798采纳,获得10
1分钟前
energyharvester完成签到 ,获得积分10
1分钟前
ST发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Run发布了新的文献求助10
1分钟前
月半完成签到,获得积分10
1分钟前
1分钟前
木子完成签到,获得积分10
1分钟前
桐桐应助果果采纳,获得10
1分钟前
浮游应助啵啵采纳,获得10
1分钟前
1分钟前
1分钟前
万能图书馆应助Claudia采纳,获得30
1分钟前
1分钟前
1分钟前
果果发布了新的文献求助10
1分钟前
Hello应助yllcjl采纳,获得10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148041
求助须知:如何正确求助?哪些是违规求助? 4344432
关于积分的说明 13529488
捐赠科研通 4186403
什么是DOI,文献DOI怎么找? 2295619
邀请新用户注册赠送积分活动 1295999
关于科研通互助平台的介绍 1239684