Identification of diagnostic biomarkers and immune cell infiltration in coronary artery disease by machine learning, nomogram, and molecular docking

列线图 接收机工作特性 候选基因 冠状动脉疾病 计算生物学 基因 基因表达谱 免疫系统 医学 基因表达 生物信息学 生物 免疫学 肿瘤科 遗传学 内科学
作者
Xinyi Jiang,Yunping Luo,Zeshi Li,He Zhang,Zhiyun Xu,Dongjin Wang
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fimmu.2024.1368904
摘要

Background Coronary artery disease (CAD) is still a lethal disease worldwide. This study aims to identify clinically relevant diagnostic biomarker in CAD and explore the potential medications on CAD. Methods GSE42148, GSE180081, and GSE12288 were downloaded as the training and validation cohorts to identify the candidate genes by constructing the weighted gene co-expression network analysis. Functional enrichment analysis was utilized to determine the functional roles of these genes. Machine learning algorithms determined the candidate biomarkers. Hub genes were then selected and validated by nomogram and the receiver operating curve. Using CIBERSORTx, the hub genes were further discovered in relation to immune cell infiltrability, and molecules associated with immune active families were analyzed by correlation analysis. Drug screening and molecular docking were used to determine medications that target the four genes. Results There were 191 and 230 key genes respectively identified by the weighted gene co-expression network analysis in two modules. A total of 421 key genes found enriched pathways by functional enrichment analysis. Candidate immune-related genes were then screened and identified by the random forest model and the eXtreme Gradient Boosting algorithm. Finally, four hub genes, namely, CSF3R, EED, HSPA1B, and IL17RA, were obtained and used to establish the nomogram model. The receiver operating curve, the area under curve, and the calibration curve were all used to validate the accuracy and usefulness of the diagnostic model. Immune cell infiltrating was examined, and CAD patients were then divided into high- and low-expression groups for further gene set enrichment analysis. Through targeting the hub genes, we also found potential drugs for anti-CAD treatment by using the molecular docking method. Conclusions CSF3R, EED, HSPA1B, and IL17RA are potential diagnostic biomarkers for CAD. CAD pathogenesis is greatly influenced by patterns of immune cell infiltration. Promising drugs offers new prospects for the development of CAD therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
011_wasd发布了新的文献求助10
刚刚
Yange发布了新的文献求助20
刚刚
刁刁完成签到,获得积分20
1秒前
2秒前
3秒前
无奈的如柏完成签到,获得积分20
3秒前
jjx1005完成签到 ,获得积分10
4秒前
只要平凡发布了新的文献求助10
4秒前
5秒前
刁刁发布了新的文献求助10
6秒前
飞上天的皮蛋完成签到,获得积分10
8秒前
zho应助WDWK采纳,获得10
11秒前
11秒前
稳重的悟空完成签到 ,获得积分10
13秒前
jiangxiaoyu完成签到 ,获得积分10
15秒前
骅骝发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
鬼小妞nice完成签到 ,获得积分10
19秒前
受伤芝麻完成签到,获得积分10
20秒前
任性迎南发布了新的文献求助10
22秒前
王青文完成签到,获得积分10
22秒前
受伤芝麻发布了新的文献求助10
22秒前
天边发布了新的文献求助10
24秒前
26秒前
28秒前
科研通AI5应助六七十三采纳,获得10
28秒前
30秒前
30秒前
席红旗发布了新的文献求助10
31秒前
丘比特应助天边采纳,获得10
32秒前
32秒前
梦梦的小可爱完成签到 ,获得积分10
32秒前
StrawCc完成签到,获得积分10
32秒前
科研通AI2S应助糊涂的板凳采纳,获得10
33秒前
李健应助科研通管家采纳,获得10
33秒前
乐乐应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
ding应助科研通管家采纳,获得30
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993971
求助须知:如何正确求助?哪些是违规求助? 3534571
关于积分的说明 11265961
捐赠科研通 3274483
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883224
科研通“疑难数据库(出版商)”最低求助积分说明 809712