Multi-UAV Adaptive Cooperative Formation Trajectory Planning Based on An Improved MATD3 Algorithm of Deep Reinforcement Learning

强化学习 弹道 计算机科学 人工智能 运动规划 钢筋 算法 控制理论(社会学) 工程类 控制(管理) 机器人 物理 结构工程 天文
作者
Xiaojun Xing,Zhiwei Zhou,Yan Li,Bing Xiao,Yilin Xun
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (9): 12484-12499 被引量:7
标识
DOI:10.1109/tvt.2024.3389555
摘要

Multi-unmanned aerial vehicle (multi-UAV) cooperative trajectory planning is an extremely challenging issue in UAV research field due to its NP-hard characteristic, collision avoiding constraints, close formation requirement, consensus convergence and high-dimensional action space etc. Especially, the difficulty of multi-UAV trajectory planning will boost comparatively when there are complex obstacles and narrow passages in unknown environments. Accordingly, a novel multi-UAV adaptive cooperative formation trajectory planning approach is proposed in this paper based on an improved deep reinforcement learning algorithm in unknown obstacle environments, which innovatively introduces long short-term memory (LSTM) recurrent neural network (RNN) into the environment perception end of multiagent twin delayed deep deterministic policy gradient (MATD3) network, and develops an improved potential field-based dense reward function to strengthen the policy learning efficiency and accelerates the convergence respectively. Moreover, a hierarchical deep reinforcement learning training mechanism, including adaptive formation layer, trajectory planning layer and action execution layer is implemented to explore an optimal trajectory planning policy. Additionally, an adaptive formation maintaining and transformation strategy is presented for UAV swarm to comply with the environment with narrow passages. Simulation results show that the proposed approach is better in policy learning efficiency, optimality of trajectory planning policy and adaptability to narrow passages than that using multi-agent deep deterministic policy gradient (MADDPG) and MATD3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyx发布了新的文献求助10
刚刚
1秒前
2秒前
Kiosta发布了新的文献求助10
3秒前
4秒前
科研通AI5应助Brave采纳,获得10
4秒前
爆米花应助进击的巨人采纳,获得10
8秒前
英姑应助Bruce采纳,获得10
8秒前
零下负七完成签到,获得积分10
8秒前
liu完成签到,获得积分10
8秒前
希望天下0贩的0应助wyx采纳,获得10
9秒前
我是老大应助Kiosta采纳,获得10
14秒前
15秒前
lwwwl发布了新的文献求助10
17秒前
司空豁应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得30
18秒前
上官若男应助科研通管家采纳,获得30
18秒前
今后应助科研通管家采纳,获得30
18秒前
司空豁应助科研通管家采纳,获得10
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得30
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
ding应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
20秒前
neyney应助科研通管家采纳,获得10
20秒前
司空豁应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
21秒前
VDC发布了新的文献求助10
21秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669843
求助须知:如何正确求助?哪些是违规求助? 3227318
关于积分的说明 9774958
捐赠科研通 2937434
什么是DOI,文献DOI怎么找? 1609349
邀请新用户注册赠送积分活动 760256
科研通“疑难数据库(出版商)”最低求助积分说明 735765