已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-UAV Adaptive Cooperative Formation Trajectory Planning Based on An Improved MATD3 Algorithm of Deep Reinforcement Learning

强化学习 弹道 计算机科学 人工智能 运动规划 钢筋 算法 控制理论(社会学) 工程类 控制(管理) 机器人 物理 结构工程 天文
作者
Xiaojun Xing,Zhiwei Zhou,Yan Li,Bing Xiao,Yilin Xun
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tvt.2024.3389555
摘要

Multi-unmanned aerial vehicle (multi-UAV) cooperative trajectory planning is an extremely challenging issue in UAV research field due to its NP-hard characteristic, collision avoiding constraints, close formation requirement, consensus convergence and high-dimensional action space etc. Especially, the difficulty of multi-UAV trajectory planning will boost comparatively when there are complex obstacles and narrow passages in unknown environments. Accordingly, a novel multi-UAV adaptive cooperative formation trajectory planning approach is proposed in this paper based on an improved deep reinforcement learning algorithm in unknown obstacle environments, which innovatively introduces long short-term memory (LSTM) recurrent neural network (RNN) into the environment perception end of multiagent twin delayed deep deterministic policy gradient (MATD3) network, and develops an improved potential field-based dense reward function to strengthen the policy learning efficiency and accelerates the convergence respectively. Moreover, a hierarchical deep reinforcement learning training mechanism, including adaptive formation layer, trajectory planning layer and action execution layer is implemented to explore an optimal trajectory planning policy. Additionally, an adaptive formation maintaining and transformation strategy is presented for UAV swarm to comply with the environment with narrow passages. Simulation results show that the proposed approach is better in policy learning efficiency, optimality of trajectory planning policy and adaptability to narrow passages than that using multi-agent deep deterministic policy gradient (MADDPG) and MATD3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iacademic发布了新的文献求助10
1秒前
3秒前
AsRNA完成签到,获得积分10
3秒前
7秒前
小柒应助大胆的尔岚采纳,获得10
9秒前
老迟到的问安完成签到 ,获得积分10
10秒前
丘比特应助KYJR采纳,获得10
10秒前
洁净艳一发布了新的文献求助30
11秒前
pluto应助自觉大碗采纳,获得10
13秒前
13秒前
14秒前
17秒前
18秒前
21秒前
vv发布了新的文献求助10
23秒前
CipherSage应助薛同学采纳,获得10
27秒前
28秒前
初七123完成签到 ,获得积分10
29秒前
磨磨唧唧应助lovestudy采纳,获得10
30秒前
31秒前
33秒前
36秒前
泥巴发布了新的文献求助100
37秒前
hiaoyi完成签到 ,获得积分0
38秒前
39秒前
无情访琴发布了新的文献求助10
39秒前
呀哈哈完成签到 ,获得积分10
40秒前
41秒前
领导范儿应助科研通管家采纳,获得10
43秒前
杳鸢应助科研通管家采纳,获得150
43秒前
Orange应助科研通管家采纳,获得10
43秒前
我是老大应助科研通管家采纳,获得10
43秒前
43秒前
Akim应助科研通管家采纳,获得10
43秒前
小马甲应助科研通管家采纳,获得10
43秒前
43秒前
43秒前
跳跃野狼发布了新的文献求助10
45秒前
葛力发布了新的文献求助10
46秒前
英俊的铭应助普通人采纳,获得10
47秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234329
求助须知:如何正确求助?哪些是违规求助? 2880694
关于积分的说明 8216556
捐赠科研通 2548288
什么是DOI,文献DOI怎么找? 1377655
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302