Boron Nitride Nanotubes in Polycarbonate for Thermal Management Applications

氮化硼 材料科学 聚碳酸酯 热的 纳米技术 复合材料 化学 有机化学 物理 气象学
作者
Azadeh Zandieh,Elnaz Baradaran Shokouhi,Mahdi Hamidinejad,Andreas Mandelis,Keun Su Kim,Chul B. Park
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (7): 7381-7394 被引量:2
标识
DOI:10.1021/acsanm.4c00093
摘要

Boron nitride nanotubes (BNNTs) are among the most effective additives for producing polymeric nanocomposites that exhibit high thermal conductivity but remain electrically nonconductive. However, the main challenge in the fabrication of such composites comes from the low dispersibility of BNNTs in polymeric matrices. This research aims to establish guidelines for controlling the morphology of nanocomposite, thereby adjusting their thermal conductivity and heat dissipation rate for optimized heat management applications. Two mixing methods, solvent and melt mixings, have been employed to incorporate noncovalently functionalized BNNTs (poly(3-hexyl-thiophene) (P3HT)-BNNTs) into a polycarbonate matrix, and the effects of processing conditions on the morphology of the nanocomposites have been decoupled and analyzed systematically. Smaller microscale agglomerations of BNNTs with better dispersion were observed with the melt mixing method, whereas the solvent mixing method maintained a higher aspect ratio of BNNTs. Although improved thermal conduction was evident, thermal conductivity in either mixing method did not change significantly up to 5 wt % BNNT; however, the heat dissipation rate of the melt-mixed samples was around twice higher. This indicates that the heat dissipation rate is sensitive to the morphology and length of the nanotubes in the samples. UV–vis-NIR spectroscopy and enhanced truncated-correlation photothermal coherence tomography (eTC-PCT) studies revealed that the higher heat dissipation rate of the melt-mixed samples is attributable to better dispersion and distribution of BNNTs that were enhanced by their smaller agglomeration sizes and aspect ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
机智的皮皮虾完成签到 ,获得积分10
1秒前
2秒前
2秒前
深情安青应助iyaaaa采纳,获得30
2秒前
慕青应助wxyllxx采纳,获得10
6秒前
呐呐完成签到,获得积分10
6秒前
Liang发布了新的文献求助10
6秒前
BSDL发布了新的文献求助10
7秒前
科研顺利发布了新的文献求助10
8秒前
8秒前
张磊发布了新的文献求助10
9秒前
9秒前
情怀应助BSDL采纳,获得10
11秒前
12秒前
12秒前
彩色小凡发布了新的文献求助10
12秒前
詹姆斯哈登完成签到,获得积分10
13秒前
13秒前
zhongjiaa完成签到,获得积分10
14秒前
HELAOBAN发布了新的文献求助10
14秒前
穆仰完成签到,获得积分10
14秒前
三余完成签到 ,获得积分10
15秒前
15秒前
Akim应助doctor_liu采纳,获得10
16秒前
BSDL完成签到,获得积分20
16秒前
Zhangkaiwen发布了新的文献求助10
17秒前
18秒前
18秒前
冷静的柠檬完成签到,获得积分10
19秒前
FashionBoy应助清澈水眸采纳,获得10
19秒前
加鲁鲁完成签到,获得积分10
20秒前
20秒前
孙义善完成签到,获得积分10
21秒前
22秒前
iyaaaa发布了新的文献求助30
23秒前
Chen发布了新的文献求助10
24秒前
思源应助平常的鞅采纳,获得10
24秒前
zhongjiaa发布了新的文献求助10
24秒前
l123发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565418
求助须知:如何正确求助?哪些是违规求助? 3138424
关于积分的说明 9426682
捐赠科研通 2838794
什么是DOI,文献DOI怎么找? 1560572
邀请新用户注册赠送积分活动 729695
科研通“疑难数据库(出版商)”最低求助积分说明 717588