Utilizing Artificial Neural Networks for Entry Vehicle Aerodynamic Characterization

空气动力学 人工神经网络 航空航天工程 表征(材料科学) 大气进入 计算机科学 工程类 材料科学 人工智能 纳米技术
作者
Zachary Ernst,Bradford E. Robertson,Dimitri N. Mavris
出处
期刊:Journal of Spacecraft and Rockets [American Institute of Aeronautics and Astronautics]
卷期号:: 1-11
标识
DOI:10.2514/1.a35737
摘要

Determining the dynamic stability of blunt body entry vehicles is a persistent engineering challenge, particularly in the low supersonic to subsonic flight regime where the behavior of the unsteady wake is a primary contributor. Dynamic stability quantities are determined by fitting measurements of a ballistic range campaign or a computational fluid dynamics (CFD) computational experiment to an assumed functional form in order to regress quasi-static stability coefficients. However, this data reduction process has many implicit assumptions that may not hold. This paper explores novel alternatives to the established methods for modeling blunt body aerodynamics. A six-degree-of-freedom CFD-in-the-loop flight model is used to run “virtual ballistic range tests,” fully capturing the relevant flow physics. Feed-forward and time-delay neural network models are fitted to the time-series trajectory and aerodynamic results, which can then be used to predict aerodynamic forces and moments. These models do not have a prescribed functional form and do not assume linearized aerodynamics. The models are evaluated for goodness-of-fit in their aerodynamic and trajectory prediction. The feed-forward neural network model resulted in a better prediction of the virtual ballistic range tests than a traditional database. The time-delay network had good open-loop performance but suffered from closed-loop instability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Wang发布了新的文献求助10
1秒前
星辰大海应助拉拉霍霍采纳,获得10
2秒前
zhanzhanzhan发布了新的文献求助10
2秒前
li发布了新的文献求助10
2秒前
王鹏程发布了新的文献求助10
2秒前
懒洋洋完成签到,获得积分20
2秒前
咯咯咯完成签到,获得积分10
3秒前
hug完成签到,获得积分0
3秒前
Ajax完成签到,获得积分10
6秒前
关于完成签到,获得积分10
6秒前
Faine完成签到 ,获得积分10
7秒前
Ava应助22采纳,获得10
8秒前
Singularity举报小包包求助涉嫌违规
9秒前
lynn完成签到,获得积分10
9秒前
虚幻向秋完成签到,获得积分10
9秒前
10秒前
芒草lx完成签到,获得积分10
11秒前
科研通AI2S应助王鹏程采纳,获得10
12秒前
静笃完成签到,获得积分10
12秒前
13秒前
善学以致用应助xu采纳,获得10
13秒前
13秒前
坦呐发布了新的文献求助10
14秒前
14秒前
aaa完成签到,获得积分10
15秒前
愉快的映之完成签到 ,获得积分10
15秒前
丘比特应助ydfq采纳,获得10
15秒前
15秒前
17秒前
17秒前
Ruiiiiii完成签到,获得积分10
17秒前
17秒前
桐桐应助十夏采纳,获得10
17秒前
19秒前
dpp完成签到,获得积分20
20秒前
21秒前
21秒前
fairy发布了新的文献求助60
22秒前
开朗紫蓝完成签到,获得积分10
22秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128679
求助须知:如何正确求助?哪些是违规求助? 2779501
关于积分的说明 7743462
捐赠科研通 2434802
什么是DOI,文献DOI怎么找? 1293635
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514