Utilizing Artificial Neural Networks for Entry Vehicle Aerodynamic Characterization

空气动力学 人工神经网络 航空航天工程 表征(材料科学) 大气进入 计算机科学 工程类 材料科学 人工智能 纳米技术
作者
Zachary Ernst,Bradford E. Robertson,Dimitri N. Mavris
出处
期刊:Journal of Spacecraft and Rockets [American Institute of Aeronautics and Astronautics]
卷期号:: 1-11
标识
DOI:10.2514/1.a35737
摘要

Determining the dynamic stability of blunt body entry vehicles is a persistent engineering challenge, particularly in the low supersonic to subsonic flight regime where the behavior of the unsteady wake is a primary contributor. Dynamic stability quantities are determined by fitting measurements of a ballistic range campaign or a computational fluid dynamics (CFD) computational experiment to an assumed functional form in order to regress quasi-static stability coefficients. However, this data reduction process has many implicit assumptions that may not hold. This paper explores novel alternatives to the established methods for modeling blunt body aerodynamics. A six-degree-of-freedom CFD-in-the-loop flight model is used to run “virtual ballistic range tests,” fully capturing the relevant flow physics. Feed-forward and time-delay neural network models are fitted to the time-series trajectory and aerodynamic results, which can then be used to predict aerodynamic forces and moments. These models do not have a prescribed functional form and do not assume linearized aerodynamics. The models are evaluated for goodness-of-fit in their aerodynamic and trajectory prediction. The feed-forward neural network model resulted in a better prediction of the virtual ballistic range tests than a traditional database. The time-delay network had good open-loop performance but suffered from closed-loop instability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
称心的不言应助YANG采纳,获得10
2秒前
唠叨的胡萝卜完成签到,获得积分10
2秒前
2秒前
搞怪孤丝完成签到 ,获得积分10
2秒前
4秒前
SAINT完成签到,获得积分10
4秒前
5秒前
7秒前
8秒前
iaskwho发布了新的文献求助10
8秒前
111完成签到,获得积分10
9秒前
9秒前
DarrenVan完成签到,获得积分10
12秒前
英俊的铭应助lk采纳,获得10
12秒前
lucky完成签到 ,获得积分10
12秒前
王国科发布了新的文献求助10
13秒前
高高的天亦完成签到 ,获得积分10
13秒前
小D发布了新的文献求助10
14秒前
村上春树的摩的完成签到 ,获得积分10
14秒前
Fox完成签到,获得积分20
15秒前
16秒前
一一完成签到 ,获得积分10
16秒前
17秒前
ccm应助科研通管家采纳,获得10
18秒前
Bio应助科研通管家采纳,获得150
18秒前
无花果应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
19秒前
ccm应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
若ruofeng应助科研通管家采纳,获得20
19秒前
dew应助科研通管家采纳,获得10
19秒前
19秒前
若ruofeng应助科研通管家采纳,获得20
19秒前
馆长应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
若ruofeng应助科研通管家采纳,获得20
19秒前
若ruofeng应助科研通管家采纳,获得20
19秒前
若ruofeng应助科研通管家采纳,获得20
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514