Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information

分割 计算机科学 人工智能 掷骰子 深度学习 卷积神经网络 图像分割 磁共振成像 模式识别(心理学) 脑瘤 边界(拓扑) 病理 数学 医学 放射科 几何学 数学分析
作者
Ahmed M. Gab Allah,Amany Sarhan,Nada M. Elshennawy
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 118833-118833 被引量:89
标识
DOI:10.1016/j.eswa.2022.118833
摘要

Blood clots in the brain are frequently caused by brain tumors. Early detection of these clots has the potential to significantly lower morbidity and mortality in cases of brain cancer. It is thus indispensable for a proper brain tumor diagnosis and treatment that tumor tissue magnetic resonance images (MRI) be accurately segmented. Several deep learning approaches to the segmentation of brain tumor MRIs have been proposed, each having been designed to properly map out ‘boundaries’ and thus achieve highly accurate segmentation. This study introduces a deep convolution neural network (DCNN), named the Edge U-Net model, built as an encoder-decoder structure inspired by the U-Net architecture. The Edge U-Net model can more precisely localise tumors by merging boundary-related MRI data with the main data from brain MRIs. In the decoder phase, boundary-related information from original MRIs of different scales is integrated with the appropriate adjacent contextual information. A novel loss function was added to this segmentation model to improve performance. This loss function is enhanced with boundary information, allowing the learning process to produce more precise results. In the conducted experiments, a public dataset with 3064 T1-Weighted Contrast Enhancement (T1-CE) images of three well-known brain tumor types were used. The experiment demonstrated that the proposed framework achieved satisfactory Dice score values compared with state-of-art models, with highly accurate differentiation of brain tissues. It achieved Dice scores of 88.8 % for meningioma, 91.76 % for glioma, and 87.28 % for pituitary tumors. Computations of other performance metrics such as the Jaccard index, sensitivity, and specificity were also conducted. According to the results, the Edge U-Net model is a potential diagnostic tool that can be used to help radiologists more precisely segment brain tumor tissue images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
七七给七七的求助进行了留言
刚刚
1秒前
1秒前
Hello应助冷静的平安采纳,获得10
1秒前
FKVB_完成签到 ,获得积分10
2秒前
饼饼完成签到,获得积分10
2秒前
天天快乐应助木木采纳,获得10
2秒前
艺玲发布了新的文献求助10
2秒前
大气飞丹发布了新的文献求助10
2秒前
丫丫完成签到,获得积分10
3秒前
科研通AI2S应助觅桃乌龙采纳,获得10
3秒前
耿强完成签到,获得积分10
3秒前
wanci应助dd采纳,获得10
4秒前
汉堡包应助cuihl123采纳,获得10
4秒前
李浓完成签到,获得积分10
4秒前
DreamMaker发布了新的文献求助10
4秒前
mao12wang完成签到,获得积分10
5秒前
5秒前
bdvdsrwteges发布了新的文献求助10
6秒前
如约而至发布了新的文献求助20
6秒前
纯真的莫茗完成签到,获得积分10
6秒前
彭于晏应助超11采纳,获得10
7秒前
7秒前
gavincsu发布了新的文献求助10
7秒前
KSGGS给KSGGS的求助进行了留言
7秒前
flow驳回了Aria应助
7秒前
lixiunan完成签到,获得积分10
7秒前
7秒前
dildil发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
边瑞明完成签到,获得积分10
10秒前
Wang发布了新的文献求助10
11秒前
Jenny应助拼搏思卉采纳,获得10
11秒前
11秒前
神勇的雅香应助不喝可乐采纳,获得10
11秒前
清脆的白开水完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759