Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information

分割 计算机科学 人工智能 掷骰子 深度学习 卷积神经网络 图像分割 磁共振成像 模式识别(心理学) 脑瘤 边界(拓扑) 病理 数学 医学 放射科 几何学 数学分析
作者
Ahmed M. Gab Allah,Amany Sarhan,Nada M. Elshennawy
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 118833-118833 被引量:106
标识
DOI:10.1016/j.eswa.2022.118833
摘要

Blood clots in the brain are frequently caused by brain tumors. Early detection of these clots has the potential to significantly lower morbidity and mortality in cases of brain cancer. It is thus indispensable for a proper brain tumor diagnosis and treatment that tumor tissue magnetic resonance images (MRI) be accurately segmented. Several deep learning approaches to the segmentation of brain tumor MRIs have been proposed, each having been designed to properly map out ‘boundaries’ and thus achieve highly accurate segmentation. This study introduces a deep convolution neural network (DCNN), named the Edge U-Net model, built as an encoder-decoder structure inspired by the U-Net architecture. The Edge U-Net model can more precisely localise tumors by merging boundary-related MRI data with the main data from brain MRIs. In the decoder phase, boundary-related information from original MRIs of different scales is integrated with the appropriate adjacent contextual information. A novel loss function was added to this segmentation model to improve performance. This loss function is enhanced with boundary information, allowing the learning process to produce more precise results. In the conducted experiments, a public dataset with 3064 T1-Weighted Contrast Enhancement (T1-CE) images of three well-known brain tumor types were used. The experiment demonstrated that the proposed framework achieved satisfactory Dice score values compared with state-of-art models, with highly accurate differentiation of brain tissues. It achieved Dice scores of 88.8 % for meningioma, 91.76 % for glioma, and 87.28 % for pituitary tumors. Computations of other performance metrics such as the Jaccard index, sensitivity, and specificity were also conducted. According to the results, the Edge U-Net model is a potential diagnostic tool that can be used to help radiologists more precisely segment brain tumor tissue images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ycg完成签到,获得积分10
刚刚
gz发布了新的文献求助10
刚刚
丘小易发布了新的文献求助10
刚刚
刚刚
stcer完成签到,获得积分10
刚刚
wu驳回了打打应助
刚刚
Adrenaline完成签到,获得积分10
1秒前
大橘完成签到 ,获得积分10
1秒前
和谐迎夏完成签到,获得积分10
1秒前
1秒前
nadeem发布了新的文献求助10
2秒前
BP发布了新的文献求助10
2秒前
2秒前
萤火虫发布了新的文献求助10
2秒前
2秒前
风雨中奔跑的兔子完成签到,获得积分10
3秒前
Hmc完成签到 ,获得积分10
3秒前
Kira完成签到,获得积分10
3秒前
四月完成签到 ,获得积分10
4秒前
孙先生YY发布了新的文献求助10
4秒前
犹豫信封发布了新的文献求助10
5秒前
张亚朋完成签到,获得积分10
6秒前
老妖怪完成签到,获得积分10
6秒前
李爱国应助包容的瑾瑜采纳,获得10
6秒前
7秒前
8秒前
小齐完成签到 ,获得积分10
9秒前
9秒前
科目三应助专注的冰巧采纳,获得10
10秒前
10秒前
hanping完成签到,获得积分10
10秒前
小王时完成签到,获得积分10
10秒前
zz完成签到,获得积分10
10秒前
莫非完成签到,获得积分10
10秒前
芝麻发布了新的文献求助10
11秒前
BP完成签到,获得积分10
12秒前
Hannah完成签到,获得积分10
12秒前
ICY完成签到,获得积分10
12秒前
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650