Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information

分割 计算机科学 人工智能 掷骰子 深度学习 卷积神经网络 图像分割 磁共振成像 模式识别(心理学) 脑瘤 边界(拓扑) 病理 数学 医学 放射科 几何学 数学分析
作者
Ahmed M. Gab Allah,Amany Sarhan,Nada M. Elshennawy
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:213: 118833-118833 被引量:71
标识
DOI:10.1016/j.eswa.2022.118833
摘要

Blood clots in the brain are frequently caused by brain tumors. Early detection of these clots has the potential to significantly lower morbidity and mortality in cases of brain cancer. It is thus indispensable for a proper brain tumor diagnosis and treatment that tumor tissue magnetic resonance images (MRI) be accurately segmented. Several deep learning approaches to the segmentation of brain tumor MRIs have been proposed, each having been designed to properly map out ‘boundaries’ and thus achieve highly accurate segmentation. This study introduces a deep convolution neural network (DCNN), named the Edge U-Net model, built as an encoder-decoder structure inspired by the U-Net architecture. The Edge U-Net model can more precisely localise tumors by merging boundary-related MRI data with the main data from brain MRIs. In the decoder phase, boundary-related information from original MRIs of different scales is integrated with the appropriate adjacent contextual information. A novel loss function was added to this segmentation model to improve performance. This loss function is enhanced with boundary information, allowing the learning process to produce more precise results. In the conducted experiments, a public dataset with 3064 T1-Weighted Contrast Enhancement (T1-CE) images of three well-known brain tumor types were used. The experiment demonstrated that the proposed framework achieved satisfactory Dice score values compared with state-of-art models, with highly accurate differentiation of brain tissues. It achieved Dice scores of 88.8 % for meningioma, 91.76 % for glioma, and 87.28 % for pituitary tumors. Computations of other performance metrics such as the Jaccard index, sensitivity, and specificity were also conducted. According to the results, the Edge U-Net model is a potential diagnostic tool that can be used to help radiologists more precisely segment brain tumor tissue images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmm完成签到,获得积分10
刚刚
刚刚
夹心发布了新的文献求助10
刚刚
刚刚
1秒前
清修完成签到,获得积分10
2秒前
隐形曼青应助实验的兔纸采纳,获得10
3秒前
4秒前
大明完成签到,获得积分10
5秒前
jluzz完成签到,获得积分10
5秒前
5秒前
齐路明发布了新的文献求助10
6秒前
cherry发布了新的文献求助10
6秒前
Owen应助kiwi采纳,获得10
6秒前
6秒前
6秒前
7秒前
yzx发布了新的文献求助10
8秒前
9秒前
靓丽的一手完成签到 ,获得积分20
9秒前
11秒前
崔尔蓉发布了新的文献求助10
11秒前
bangyang发布了新的文献求助10
11秒前
miniwuye完成签到,获得积分10
12秒前
科研通AI2S应助wwwwwwhx采纳,获得10
12秒前
齐路明完成签到,获得积分10
13秒前
13秒前
传奇3应助lurongjun采纳,获得10
14秒前
haorui完成签到,获得积分10
14秒前
14秒前
15秒前
Jasper应助谁来帮帮朕采纳,获得30
16秒前
Shaw发布了新的文献求助100
16秒前
脑洞疼应助wys采纳,获得10
16秒前
科研通AI2S应助aqing采纳,获得10
16秒前
祝顺遂完成签到,获得积分10
16秒前
JamesPei应助天天向上采纳,获得10
16秒前
wang发布了新的文献求助10
17秒前
顾矜应助sjbai采纳,获得10
17秒前
cherry完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3127454
求助须知:如何正确求助?哪些是违规求助? 2778263
关于积分的说明 7738628
捐赠科研通 2433618
什么是DOI,文献DOI怎么找? 1292974
科研通“疑难数据库(出版商)”最低求助积分说明 623091
版权声明 600489