Time series prediction of hydrate dynamics on flow assurance using PCA and Recurrent neural networks with iterative transfer learning

流量保证 水合物 计算机科学 机器学习 人工智能 人工神经网络 笼状水合物 深度学习 辍学(神经网络) 特征工程 时间序列 学习迁移 系列(地层学) 化学 地质学 古生物学 有机化学
作者
Nayoung Lee,Hyunho Kim,JongYeon Jung,Ki Heum Park,Zhenyuan Yin,Yutaek Seo
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:263: 118111-118111 被引量:2
标识
DOI:10.1016/j.ces.2022.118111
摘要

Preventing gas hydrate formation is critical in offshore gas and oil production systems. Several models can predict hydrate formation, however, these empirical approaches have limitations due to dependency on geometries and fluid characteristics of the systems. The trends of hydrate formation or risk are considered statistical, which means there is no definite model to describe its behavior. Herein, we present a novel framework based on a combination of feature reduction methods and several deep learning models to predict the hydrate formation trend through the multivariate sensor data. Transition and segregation trends during hydrate formation were predicted in real-time using sequential time series data from the last 60 s. We employed various deep learning models (Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance the prediction ability of each model. Two groups of experimental data (200 rpm, 600 rpm) were used for training and testing the prediction to examine the universal applicability of the model. Transfer learning in training the model was employed to apply the discrete experimental set into time-series data and enhance the accuracy. The results with higher layer numbers and a dropout rate of 0.2 ∼ 0.6 showed the best performance. ARLSTM showed the smallest error among deep learning models and predicted the good trend of kinetic characteristics (transition and segregation part) during the hydrate formation. This approach based on deep learning can be adopted for risk and issue detection of pipelines in the gas production system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hdn完成签到,获得积分10
刚刚
曾无忧发布了新的文献求助10
刚刚
举个栗子8完成签到,获得积分10
刚刚
666y完成签到,获得积分10
刚刚
1秒前
大香蕉发布了新的文献求助10
1秒前
尊敬凝荷完成签到,获得积分10
1秒前
einspringen发布了新的文献求助10
1秒前
youknowdcf发布了新的文献求助10
2秒前
小蜻蜓完成签到,获得积分10
2秒前
粗心的忆山完成签到 ,获得积分10
2秒前
00发布了新的文献求助10
2秒前
薯条派完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
常裤子完成签到,获得积分10
3秒前
神勇友灵完成签到,获得积分0
3秒前
Zhijiuz完成签到,获得积分10
4秒前
留白完成签到 ,获得积分10
4秒前
winwin完成签到,获得积分10
4秒前
呀呀呀完成签到,获得积分10
4秒前
大肉猪完成签到,获得积分10
5秒前
今日无事发布了新的文献求助10
5秒前
丰富的高山完成签到,获得积分10
5秒前
泡泡完成签到,获得积分10
6秒前
6秒前
你好完成签到,获得积分20
6秒前
6秒前
zy发布了新的文献求助10
6秒前
cenghao应助吭哧吭哧采纳,获得10
6秒前
jianguo完成签到,获得积分10
6秒前
薯条派发布了新的文献求助10
7秒前
einspringen完成签到,获得积分10
7秒前
华仔应助文静的铅笔采纳,获得10
7秒前
鱿鱼炒黄瓜完成签到,获得积分10
8秒前
李妍妍完成签到,获得积分10
8秒前
清脆的白开水完成签到,获得积分10
8秒前
Lau完成签到,获得积分10
8秒前
龙腾岁月发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959