Time series prediction of hydrate dynamics on flow assurance using PCA and Recurrent neural networks with iterative transfer learning

流量保证 水合物 计算机科学 机器学习 人工智能 人工神经网络 笼状水合物 深度学习 辍学(神经网络) 特征工程 时间序列 学习迁移 系列(地层学) 化学 地质学 古生物学 有机化学
作者
Nayoung Lee,Hyunho Kim,JongYeon Jung,Ki Heum Park,Zhenyuan Yin,Yutaek Seo
出处
期刊:Chemical Engineering Science [Elsevier BV]
卷期号:263: 118111-118111 被引量:2
标识
DOI:10.1016/j.ces.2022.118111
摘要

Preventing gas hydrate formation is critical in offshore gas and oil production systems. Several models can predict hydrate formation, however, these empirical approaches have limitations due to dependency on geometries and fluid characteristics of the systems. The trends of hydrate formation or risk are considered statistical, which means there is no definite model to describe its behavior. Herein, we present a novel framework based on a combination of feature reduction methods and several deep learning models to predict the hydrate formation trend through the multivariate sensor data. Transition and segregation trends during hydrate formation were predicted in real-time using sequential time series data from the last 60 s. We employed various deep learning models (Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance the prediction ability of each model. Two groups of experimental data (200 rpm, 600 rpm) were used for training and testing the prediction to examine the universal applicability of the model. Transfer learning in training the model was employed to apply the discrete experimental set into time-series data and enhance the accuracy. The results with higher layer numbers and a dropout rate of 0.2 ∼ 0.6 showed the best performance. ARLSTM showed the smallest error among deep learning models and predicted the good trend of kinetic characteristics (transition and segregation part) during the hydrate formation. This approach based on deep learning can be adopted for risk and issue detection of pipelines in the gas production system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
研友_LJGpan完成签到,获得积分10
刚刚
粗暴的海豚完成签到,获得积分10
刚刚
bboo发布了新的文献求助200
1秒前
段王爷发布了新的文献求助10
1秒前
忐忑的源智完成签到,获得积分10
1秒前
lyric完成签到,获得积分10
2秒前
菜菜完成签到,获得积分10
2秒前
仁爱的怜南完成签到,获得积分10
2秒前
旺仔同学完成签到,获得积分10
3秒前
飞天猫完成签到,获得积分10
3秒前
cyd2007cyd完成签到,获得积分10
3秒前
3秒前
Fe_001完成签到 ,获得积分10
3秒前
Hello应助mof采纳,获得10
4秒前
4秒前
4秒前
负责的中道完成签到,获得积分20
5秒前
zs完成签到,获得积分10
5秒前
传奇3应助Liu_letters采纳,获得30
5秒前
一一完成签到,获得积分10
6秒前
6秒前
cheng完成签到,获得积分10
6秒前
大脚丫完成签到,获得积分10
6秒前
科研通AI5应助宠仙采纳,获得10
6秒前
热爱科研的贝完成签到,获得积分10
6秒前
cc完成签到,获得积分10
6秒前
7秒前
爆米花应助科研小乞丐采纳,获得10
7秒前
song完成签到 ,获得积分10
7秒前
Rui豆豆完成签到,获得积分10
7秒前
长情霸发布了新的文献求助10
8秒前
冷漠的布丁完成签到,获得积分10
8秒前
8秒前
残荷听雨发布了新的文献求助10
8秒前
研友_alan发布了新的文献求助10
8秒前
风中的善愁完成签到,获得积分10
9秒前
lumangxiaozi完成签到,获得积分10
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598884
求助须知:如何正确求助?哪些是违规求助? 4009687
关于积分的说明 12413038
捐赠科研通 3689309
什么是DOI,文献DOI怎么找? 2033794
邀请新用户注册赠送积分活动 1066934
科研通“疑难数据库(出版商)”最低求助积分说明 952021