Time series prediction of hydrate dynamics on flow assurance using PCA and Recurrent neural networks with iterative transfer learning

流量保证 水合物 计算机科学 机器学习 人工智能 人工神经网络 笼状水合物 深度学习 辍学(神经网络) 特征工程 时间序列 学习迁移 系列(地层学) 化学 地质学 古生物学 有机化学
作者
Nayoung Lee,Hyunho Kim,JongYeon Jung,Ki Heum Park,Zhenyuan Yin,Yutaek Seo
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:263: 118111-118111 被引量:2
标识
DOI:10.1016/j.ces.2022.118111
摘要

Preventing gas hydrate formation is critical in offshore gas and oil production systems. Several models can predict hydrate formation, however, these empirical approaches have limitations due to dependency on geometries and fluid characteristics of the systems. The trends of hydrate formation or risk are considered statistical, which means there is no definite model to describe its behavior. Herein, we present a novel framework based on a combination of feature reduction methods and several deep learning models to predict the hydrate formation trend through the multivariate sensor data. Transition and segregation trends during hydrate formation were predicted in real-time using sequential time series data from the last 60 s. We employed various deep learning models (Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance the prediction ability of each model. Two groups of experimental data (200 rpm, 600 rpm) were used for training and testing the prediction to examine the universal applicability of the model. Transfer learning in training the model was employed to apply the discrete experimental set into time-series data and enhance the accuracy. The results with higher layer numbers and a dropout rate of 0.2 ∼ 0.6 showed the best performance. ARLSTM showed the smallest error among deep learning models and predicted the good trend of kinetic characteristics (transition and segregation part) during the hydrate formation. This approach based on deep learning can be adopted for risk and issue detection of pipelines in the gas production system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星星点灯完成签到,获得积分10
2秒前
甜美无剑应助Pluto采纳,获得30
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
子昂加加油完成签到,获得积分10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
元谷雪应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Lx发布了新的文献求助10
3秒前
承乐应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
乐空思应助科研通管家采纳,获得30
3秒前
元谷雪应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
元谷雪应助科研通管家采纳,获得10
3秒前
3秒前
核桃应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得15
4秒前
4秒前
4秒前
4秒前
4秒前
渴望者发布了新的文献求助10
5秒前
6秒前
FightingW发布了新的文献求助10
7秒前
在水一方应助阳光采纳,获得10
7秒前
小衫生发布了新的文献求助30
7秒前
DumPling完成签到 ,获得积分10
7秒前
XIAOJU_U完成签到 ,获得积分10
8秒前
陈星发布了新的文献求助10
8秒前
凡仔发布了新的文献求助10
8秒前
9秒前
llll发布了新的文献求助10
9秒前
11秒前
隐形曼青应助ri_290采纳,获得10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781