Time series prediction of hydrate dynamics on flow assurance using PCA and Recurrent neural networks with iterative transfer learning

流量保证 水合物 计算机科学 机器学习 人工智能 人工神经网络 笼状水合物 深度学习 辍学(神经网络) 特征工程 时间序列 学习迁移 系列(地层学) 化学 地质学 古生物学 有机化学
作者
Nayoung Lee,Hyunho Kim,JongYeon Jung,Ki Heum Park,Zhenyuan Yin,Yutaek Seo
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:263: 118111-118111 被引量:2
标识
DOI:10.1016/j.ces.2022.118111
摘要

Preventing gas hydrate formation is critical in offshore gas and oil production systems. Several models can predict hydrate formation, however, these empirical approaches have limitations due to dependency on geometries and fluid characteristics of the systems. The trends of hydrate formation or risk are considered statistical, which means there is no definite model to describe its behavior. Herein, we present a novel framework based on a combination of feature reduction methods and several deep learning models to predict the hydrate formation trend through the multivariate sensor data. Transition and segregation trends during hydrate formation were predicted in real-time using sequential time series data from the last 60 s. We employed various deep learning models (Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance the prediction ability of each model. Two groups of experimental data (200 rpm, 600 rpm) were used for training and testing the prediction to examine the universal applicability of the model. Transfer learning in training the model was employed to apply the discrete experimental set into time-series data and enhance the accuracy. The results with higher layer numbers and a dropout rate of 0.2 ∼ 0.6 showed the best performance. ARLSTM showed the smallest error among deep learning models and predicted the good trend of kinetic characteristics (transition and segregation part) during the hydrate formation. This approach based on deep learning can be adopted for risk and issue detection of pipelines in the gas production system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助ho采纳,获得30
3秒前
wing完成签到 ,获得积分10
3秒前
浮游应助猪猪hero采纳,获得10
5秒前
mafukairi应助猪猪hero采纳,获得10
5秒前
风中冰香应助猪猪hero采纳,获得10
5秒前
santory应助猪猪hero采纳,获得10
5秒前
彭于晏应助猪猪hero采纳,获得10
5秒前
浮游应助猪猪hero采纳,获得10
6秒前
wanci应助猪猪hero采纳,获得30
6秒前
6秒前
6秒前
绿鬼蓝完成签到 ,获得积分10
7秒前
11秒前
猪猪hero发布了新的文献求助30
15秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
小离应助科研通管家采纳,获得10
17秒前
LPPQBB应助科研通管家采纳,获得150
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
17秒前
缓慢耳机完成签到,获得积分20
20秒前
xiaofenzi完成签到,获得积分10
23秒前
24秒前
Johnlian完成签到 ,获得积分10
24秒前
猪猪hero发布了新的文献求助10
28秒前
南风完成签到 ,获得积分10
30秒前
无心客应助小杨采纳,获得50
31秒前
31秒前
幼儿园老大完成签到 ,获得积分10
34秒前
35秒前
MchemG应助ho采纳,获得30
36秒前
john完成签到 ,获得积分10
38秒前
苹果大侠完成签到 ,获得积分10
40秒前
42秒前
斯文败类完成签到,获得积分10
42秒前
Xuz完成签到 ,获得积分10
42秒前
45秒前
xiaoguai完成签到 ,获得积分10
45秒前
耍酷的雪糕完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304275
求助须知:如何正确求助?哪些是违规求助? 4450880
关于积分的说明 13849976
捐赠科研通 4337819
什么是DOI,文献DOI怎么找? 2381673
邀请新用户注册赠送积分活动 1376668
关于科研通互助平台的介绍 1343751