Time series prediction of hydrate dynamics on flow assurance using PCA and Recurrent neural networks with iterative transfer learning

流量保证 水合物 计算机科学 机器学习 人工智能 人工神经网络 笼状水合物 深度学习 辍学(神经网络) 特征工程 时间序列 学习迁移 系列(地层学) 化学 地质学 古生物学 有机化学
作者
Nayoung Lee,Hyunho Kim,JongYeon Jung,Ki Heum Park,Zhenyuan Yin,Yutaek Seo
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:263: 118111-118111 被引量:2
标识
DOI:10.1016/j.ces.2022.118111
摘要

Preventing gas hydrate formation is critical in offshore gas and oil production systems. Several models can predict hydrate formation, however, these empirical approaches have limitations due to dependency on geometries and fluid characteristics of the systems. The trends of hydrate formation or risk are considered statistical, which means there is no definite model to describe its behavior. Herein, we present a novel framework based on a combination of feature reduction methods and several deep learning models to predict the hydrate formation trend through the multivariate sensor data. Transition and segregation trends during hydrate formation were predicted in real-time using sequential time series data from the last 60 s. We employed various deep learning models (Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance the prediction ability of each model. Two groups of experimental data (200 rpm, 600 rpm) were used for training and testing the prediction to examine the universal applicability of the model. Transfer learning in training the model was employed to apply the discrete experimental set into time-series data and enhance the accuracy. The results with higher layer numbers and a dropout rate of 0.2 ∼ 0.6 showed the best performance. ARLSTM showed the smallest error among deep learning models and predicted the good trend of kinetic characteristics (transition and segregation part) during the hydrate formation. This approach based on deep learning can be adopted for risk and issue detection of pipelines in the gas production system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑以松完成签到,获得积分10
刚刚
1秒前
2秒前
刘泽完成签到,获得积分10
2秒前
2秒前
xxfsx应助李思雨采纳,获得10
2秒前
温柔夏蓉发布了新的文献求助10
3秒前
4秒前
Rachel完成签到,获得积分10
5秒前
独自受罪发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
白河发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
欣喜的秋蝶完成签到,获得积分10
10秒前
天堑无涯完成签到,获得积分20
10秒前
10秒前
11秒前
果子完成签到 ,获得积分10
12秒前
patience发布了新的文献求助10
13秒前
13秒前
大胆铃铛发布了新的文献求助10
13秒前
13秒前
13秒前
豆子完成签到,获得积分10
13秒前
年轻纸飞机完成签到 ,获得积分10
13秒前
Mic应助lyw采纳,获得10
14秒前
moub完成签到,获得积分20
14秒前
UNVS发布了新的文献求助10
14秒前
15秒前
跳跃的冰淇淋完成签到,获得积分20
15秒前
儒雅路人完成签到,获得积分10
17秒前
桐桐应助patience采纳,获得10
18秒前
18秒前
18秒前
传奇3应助苹果星星采纳,获得10
19秒前
zyq发布了新的文献求助10
19秒前
含蓄凝梦发布了新的文献求助10
19秒前
复杂的画板完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424308
求助须知:如何正确求助?哪些是违规求助? 4538684
关于积分的说明 14163217
捐赠科研通 4455559
什么是DOI,文献DOI怎么找? 2443800
邀请新用户注册赠送积分活动 1434944
关于科研通互助平台的介绍 1412304