Time series prediction of hydrate dynamics on flow assurance using PCA and Recurrent neural networks with iterative transfer learning

流量保证 水合物 计算机科学 机器学习 人工智能 人工神经网络 笼状水合物 深度学习 辍学(神经网络) 特征工程 时间序列 学习迁移 系列(地层学) 化学 地质学 古生物学 有机化学
作者
Nayoung Lee,Hyunho Kim,JongYeon Jung,Ki Heum Park,Zhenyuan Yin,Yutaek Seo
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:263: 118111-118111 被引量:2
标识
DOI:10.1016/j.ces.2022.118111
摘要

Preventing gas hydrate formation is critical in offshore gas and oil production systems. Several models can predict hydrate formation, however, these empirical approaches have limitations due to dependency on geometries and fluid characteristics of the systems. The trends of hydrate formation or risk are considered statistical, which means there is no definite model to describe its behavior. Herein, we present a novel framework based on a combination of feature reduction methods and several deep learning models to predict the hydrate formation trend through the multivariate sensor data. Transition and segregation trends during hydrate formation were predicted in real-time using sequential time series data from the last 60 s. We employed various deep learning models (Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance the prediction ability of each model. Two groups of experimental data (200 rpm, 600 rpm) were used for training and testing the prediction to examine the universal applicability of the model. Transfer learning in training the model was employed to apply the discrete experimental set into time-series data and enhance the accuracy. The results with higher layer numbers and a dropout rate of 0.2 ∼ 0.6 showed the best performance. ARLSTM showed the smallest error among deep learning models and predicted the good trend of kinetic characteristics (transition and segregation part) during the hydrate formation. This approach based on deep learning can be adopted for risk and issue detection of pipelines in the gas production system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助choup53采纳,获得10
刚刚
1秒前
RYAN完成签到,获得积分10
1秒前
花鸟风月evereo完成签到,获得积分10
1秒前
DS发布了新的文献求助10
1秒前
G.D完成签到 ,获得积分10
1秒前
方悦完成签到 ,获得积分10
1秒前
cycycy发布了新的文献求助10
2秒前
2秒前
Gray完成签到,获得积分10
2秒前
爱吃橙子完成签到 ,获得积分10
3秒前
淳于友琴发布了新的文献求助10
3秒前
wanci应助LIU采纳,获得10
3秒前
3秒前
3秒前
张张完成签到,获得积分10
4秒前
4秒前
4秒前
我是老大应助菜鸟采纳,获得10
4秒前
4秒前
4秒前
可爱的函函应助猪米妮采纳,获得10
4秒前
4秒前
yu发布了新的文献求助30
5秒前
小c发布了新的文献求助10
5秒前
5秒前
Alin完成签到,获得积分10
6秒前
6秒前
6秒前
认真初之完成签到,获得积分10
6秒前
7秒前
龙龙宝宝发布了新的文献求助10
7秒前
思源应助nihao采纳,获得10
7秒前
7秒前
liu完成签到 ,获得积分10
8秒前
8秒前
ding应助神勇的语梦采纳,获得10
8秒前
甜甜的满天完成签到,获得积分10
8秒前
itharmony应助yyx采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624193
求助须知:如何正确求助?哪些是违规求助? 4710059
关于积分的说明 14949218
捐赠科研通 4778004
什么是DOI,文献DOI怎么找? 2553171
邀请新用户注册赠送积分活动 1515043
关于科研通互助平台的介绍 1475458