Time series prediction of hydrate dynamics on flow assurance using PCA and Recurrent neural networks with iterative transfer learning

流量保证 水合物 计算机科学 机器学习 人工智能 人工神经网络 笼状水合物 深度学习 辍学(神经网络) 特征工程 时间序列 学习迁移 系列(地层学) 化学 地质学 古生物学 有机化学
作者
Nayoung Lee,Hyunho Kim,JongYeon Jung,Ki Heum Park,Zhenyuan Yin,Yutaek Seo
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:263: 118111-118111 被引量:2
标识
DOI:10.1016/j.ces.2022.118111
摘要

Preventing gas hydrate formation is critical in offshore gas and oil production systems. Several models can predict hydrate formation, however, these empirical approaches have limitations due to dependency on geometries and fluid characteristics of the systems. The trends of hydrate formation or risk are considered statistical, which means there is no definite model to describe its behavior. Herein, we present a novel framework based on a combination of feature reduction methods and several deep learning models to predict the hydrate formation trend through the multivariate sensor data. Transition and segregation trends during hydrate formation were predicted in real-time using sequential time series data from the last 60 s. We employed various deep learning models (Dense, LSTM, GRU, ARLSTM), layers, and dropout to investigate and enhance the prediction ability of each model. Two groups of experimental data (200 rpm, 600 rpm) were used for training and testing the prediction to examine the universal applicability of the model. Transfer learning in training the model was employed to apply the discrete experimental set into time-series data and enhance the accuracy. The results with higher layer numbers and a dropout rate of 0.2 ∼ 0.6 showed the best performance. ARLSTM showed the smallest error among deep learning models and predicted the good trend of kinetic characteristics (transition and segregation part) during the hydrate formation. This approach based on deep learning can be adopted for risk and issue detection of pipelines in the gas production system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘘嘘完成签到,获得积分10
1秒前
三伏天发布了新的文献求助20
1秒前
思绪摸摸头完成签到 ,获得积分10
1秒前
Gakay完成签到,获得积分10
2秒前
动听平露完成签到,获得积分10
4秒前
一心想出文章完成签到,获得积分0
6秒前
万能的小叮当完成签到,获得积分0
6秒前
xiao完成签到,获得积分10
8秒前
小二郎应助2222采纳,获得10
8秒前
10秒前
11秒前
江幻天完成签到,获得积分10
12秒前
fyjlfy完成签到 ,获得积分10
14秒前
asdfghjkl完成签到,获得积分10
15秒前
花花完成签到,获得积分10
15秒前
小蘑菇应助Ensh采纳,获得10
16秒前
李爱国应助张涛采纳,获得10
18秒前
伊酒应助LI采纳,获得10
18秒前
阿辉完成签到,获得积分10
18秒前
科研通AI2S应助asdfghjkl采纳,获得10
19秒前
小确幸完成签到,获得积分10
20秒前
21秒前
孟子豪完成签到,获得积分20
24秒前
guoguo应助weiyongswust采纳,获得10
24秒前
科目三应助难过的蘑菇采纳,获得10
24秒前
桑尼号完成签到,获得积分10
25秒前
大鹏完成签到,获得积分10
26秒前
27秒前
乐多完成签到,获得积分10
28秒前
2222完成签到,获得积分10
28秒前
guangshuang完成签到,获得积分10
31秒前
31秒前
无聊的翠芙完成签到,获得积分10
31秒前
31秒前
落红禹03发布了新的文献求助10
31秒前
张涛发布了新的文献求助10
32秒前
彭于晏应助m30采纳,获得10
32秒前
白白拜拜完成签到,获得积分10
33秒前
沉默的凝荷完成签到,获得积分10
34秒前
36秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339197
求助须知:如何正确求助?哪些是违规求助? 2967110
关于积分的说明 8628328
捐赠科研通 2646630
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180