Coronary Artery Stent Evaluation by CTA: Impact of Deep Learning Reconstruction and Subtraction Technique

医学 减法 支架 再狭窄 放射科 管腔(解剖学) 狭窄 工件(错误) 冠状动脉疾病 核医学 数字减影血管造影 血管造影 心脏病学 外科 人工智能 算术 数学 计算机科学
作者
Cheng Xu,Yan Yi,Min Xu,Jing Yan,Yubo Guo,Jian Wang,Yun Wang,Yumei Li,Zhengyu Jin,Yining Wang
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:220 (1): 63-72 被引量:6
标识
DOI:10.2214/ajr.22.27983
摘要

BACKGROUND. Coronary CTA with hybrid iterative reconstruction (HIR) is prone to false-positive results for in-stent restenosis due to stent-related blooming artifact. OBJECTIVE. The purpose of this study is to assess the impact of deep learning reconstruction (DLR), subtraction images, and the combination of DLR and subtraction images on the diagnostic performance of coronary CTA for the detection of in-stent restenosis. METHODS. This prospective study included patients with coronary stents who underwent coronary CTA between March 2020 and August 2021. CTA used a technique with two breath-holds (noncontrast and contrast-enhanced acquisitions). Conventional and subtraction images were reconstructed for HIR and DLR. The maximum visible instent lumen diameter was measured. Two readers independently evaluated images for in-stent restenosis (≥ 50% stenosis). A simulated assessment of combined conventional and subtraction images was generated, reflecting assessment of conventional and subtraction images in the presence or absence of severe misregistration artifact, respectively. Invasive angiography served as reference standard. RESULTS. The study enrolled 30 patients (22 men and eight women; mean age, 63.6 ± 7.4 [SD] years) with a total of 59 stents; severe misregistration artifact was present for 32 stents. Maximum visible in-stent lumen diameter was higher for DLR than for HIR (2.3 ± 0.5 vs 2.1 ± 0.5 mm, p < .001), and among stents without severe misregistration artifact, it was higher for subtraction than conventional DLR (3.0 ± 0.5 vs 2.4 ± 0.5, p < .001). Among conventional CTA with HIR, conventional CTA with DLR, combination (conventional and subtraction) approach with HIR, and combination (conventional and subtraction) approach with DLR, the highest patient-level diagnostic performance measures were as follows: for reader 1, sensitivity was identical (62.5%), specificity was highest for combination with DLR (90.1%), PPV was highest for combination with DLR (71.4%), NPV was highest for combination with DLR (87.0%), and accuracy was highest for combination with DLR (83.3%); for reader 2, sensitivity was identical (50.0%), specificity was highest for combination with HIR or DLR (both 95.5%), PPV was highest for combination with HIR or DLR (both 80.0%), NPV was highest for combination with HIR or DLR (84.0%), and accuracy was highest for combination with HIR or DLR (both 83.3%). CONCLUSION. The combined DLR and subtraction technique yielded optimal diagnostic performance for detecting in-stent restenosis by coronary CTA. CLINICAL IMPACT. The described technique could guide patient selection for invasive coronary stent evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助jy采纳,获得10
刚刚
hkxfg完成签到,获得积分10
刚刚
duo完成签到,获得积分10
1秒前
2秒前
spurs17发布了新的文献求助10
2秒前
2秒前
善学以致用应助BaekHyun采纳,获得10
2秒前
3秒前
3秒前
nanhe698完成签到,获得积分10
4秒前
4秒前
李本来完成签到,获得积分20
5秒前
看看发布了新的文献求助10
5秒前
ZZY完成签到,获得积分10
5秒前
DQY完成签到,获得积分10
6秒前
BONBON完成签到,获得积分20
6秒前
动听导师发布了新的文献求助10
7秒前
7秒前
季忆完成签到,获得积分10
7秒前
小周发布了新的文献求助10
8秒前
smile发布了新的文献求助10
8秒前
9秒前
Lore完成签到 ,获得积分10
9秒前
9秒前
jiang完成签到,获得积分10
10秒前
10秒前
无奈的酒窝关注了科研通微信公众号
11秒前
毛毛完成签到,获得积分10
11秒前
正在完成签到,获得积分10
12秒前
12秒前
充电宝应助JR采纳,获得10
13秒前
13秒前
cc完成签到,获得积分20
13秒前
李爱国应助111采纳,获得10
13秒前
jy发布了新的文献求助10
13秒前
好好完成签到 ,获得积分10
14秒前
阿希塔完成签到,获得积分10
14秒前
JamesPei应助看看采纳,获得10
14秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808