Crossover Operators for Molecular Graphs with an Application to Virtual Drug Screening

渡线 计算机科学 背景(考古学) 理论计算机科学 顶点(图论) 算法 数学 图形 人工智能 生物 古生物学
作者
Nico Domschke,Bruno E. Schmidt,Thomas Gatter,Richard Golnik,Paul Eisenhuth,Fabian Ließmann,Jens Meiler,Peter F. Stadler
标识
DOI:10.26434/chemrxiv-2024-41295
摘要

Genetic Algorithms are a powerful method to solve optimization problems with complex cost functions over vast search spaces that rely in particular on recombining parts of previous solutions. Crossover operators play a crucial role in this context. Here, we describe a large class of these operators designed for searching over spaces of graphs. These operators are based on introducing small cuts into graphs and rejoining the resulting induced subgraphs of two parents. This form of cut-and-join crossover can be restricted in a consistent way to preserve local properties such as vertex-degrees (valency), or bond-orders, as well as global properties such as graph-theoretic planarity. In contrast to crossover on strings, cut-and-join crossover on graphs is powerful enough to ergodically explore chemical space even in the absence of mutation operators. Extensive benchmarking shows that the offspring of molecular graphs are again plausible molecules with high probability, while at the same time crossover drastically increases the diversity compared to initial molecule libraries. Moreover, desirable properties such as favorable indices of synthesizability are preserved with sufficient frequency that candidate offsprings can be filtered efficiently for such properties. As an application we utilized the cut-and-join crossover in REvoLd, a GA-based system for computer-aided drug design. In optimization runs searching for ligands binding to four different target proteins we consistently found candidate molecules with binding constants exceeding the best known binders as well as candidates found in make-on-demand libraries. Taken together, cut-and-join crossover operators constitute a mathematically simple and well-characterized approach to recombination of molecules that performed very well in real-life CADD tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
3秒前
5秒前
7秒前
lsx发布了新的文献求助10
7秒前
dili发布了新的文献求助20
7秒前
7秒前
Akim应助富贵李采纳,获得10
7秒前
慕青应助bobo采纳,获得10
8秒前
鬼豆完成签到,获得积分10
8秒前
8秒前
老姚发布了新的文献求助10
9秒前
9秒前
我要向阳而生完成签到 ,获得积分10
9秒前
111完成签到,获得积分10
9秒前
10秒前
852应助乐观笑南采纳,获得10
10秒前
11秒前
11秒前
11秒前
浮游应助Percy采纳,获得10
11秒前
sswbzh应助xxsw采纳,获得200
12秒前
12秒前
lls发布了新的文献求助10
12秒前
wf0806发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
上官若男应助sqq采纳,获得10
14秒前
wangxw完成签到,获得积分10
14秒前
Li完成签到,获得积分20
14秒前
15秒前
16秒前
小小K发布了新的文献求助10
16秒前
动听葵阴发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
活在当下发布了新的文献求助10
18秒前
mingtian发布了新的文献求助10
18秒前
青山有别完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145