Crossover Operators for Molecular Graphs with an Application to Virtual Drug Screening

渡线 计算机科学 背景(考古学) 理论计算机科学 顶点(图论) 算法 数学 图形 人工智能 生物 古生物学
作者
Nico Domschke,Bruno E. Schmidt,Thomas Gatter,Richard Golnik,Paul Eisenhuth,Fabian Ließmann,Jens Meiler,Peter F. Stadler
标识
DOI:10.26434/chemrxiv-2024-41295
摘要

Genetic Algorithms are a powerful method to solve optimization problems with complex cost functions over vast search spaces that rely in particular on recombining parts of previous solutions. Crossover operators play a crucial role in this context. Here, we describe a large class of these operators designed for searching over spaces of graphs. These operators are based on introducing small cuts into graphs and rejoining the resulting induced subgraphs of two parents. This form of cut-and-join crossover can be restricted in a consistent way to preserve local properties such as vertex-degrees (valency), or bond-orders, as well as global properties such as graph-theoretic planarity. In contrast to crossover on strings, cut-and-join crossover on graphs is powerful enough to ergodically explore chemical space even in the absence of mutation operators. Extensive benchmarking shows that the offspring of molecular graphs are again plausible molecules with high probability, while at the same time crossover drastically increases the diversity compared to initial molecule libraries. Moreover, desirable properties such as favorable indices of synthesizability are preserved with sufficient frequency that candidate offsprings can be filtered efficiently for such properties. As an application we utilized the cut-and-join crossover in REvoLd, a GA-based system for computer-aided drug design. In optimization runs searching for ligands binding to four different target proteins we consistently found candidate molecules with binding constants exceeding the best known binders as well as candidates found in make-on-demand libraries. Taken together, cut-and-join crossover operators constitute a mathematically simple and well-characterized approach to recombination of molecules that performed very well in real-life CADD tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111完成签到,获得积分10
1秒前
1秒前
马良完成签到,获得积分10
1秒前
温柔孤兰发布了新的文献求助10
1秒前
2秒前
Owen应助戒骄戒躁采纳,获得10
2秒前
4秒前
5秒前
WYJie完成签到,获得积分10
5秒前
今后应助风雨采纳,获得10
8秒前
yoyo发布了新的文献求助10
9秒前
9秒前
zzy发布了新的文献求助10
10秒前
称心寒松发布了新的文献求助30
11秒前
PPSlu完成签到,获得积分10
11秒前
11秒前
deadpool发布了新的文献求助10
11秒前
帅帅哈完成签到,获得积分10
12秒前
科目三应助武雨寒采纳,获得10
12秒前
斯文败类应助结实的荷采纳,获得10
12秒前
14秒前
14秒前
15秒前
潇洒的诗桃应助JMao采纳,获得30
15秒前
17秒前
Hoodie发布了新的文献求助10
17秒前
vivelejrlee完成签到,获得积分10
19秒前
JamesPei应助星期一采纳,获得10
19秒前
19秒前
cmccs发布了新的文献求助50
20秒前
20秒前
21秒前
juanlin2011发布了新的文献求助10
23秒前
hqq2312发布了新的文献求助10
23秒前
风雨发布了新的文献求助10
25秒前
25秒前
25秒前
凯文发布了新的文献求助10
27秒前
李爱国应助泽秀儿采纳,获得10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254201
求助须知:如何正确求助?哪些是违规求助? 2896520
关于积分的说明 8292993
捐赠科研通 2565415
什么是DOI,文献DOI怎么找? 1393024
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629880