Crossover Operators for Molecular Graphs with an Application to Virtual Drug Screening

渡线 计算机科学 背景(考古学) 理论计算机科学 顶点(图论) 算法 数学 图形 人工智能 生物 古生物学
作者
Nico Domschke,Bruno E. Schmidt,Thomas Gatter,Richard Golnik,Paul Eisenhuth,Fabian Ließmann,Jens Meiler,Peter F. Stadler
标识
DOI:10.26434/chemrxiv-2024-41295
摘要

Genetic Algorithms are a powerful method to solve optimization problems with complex cost functions over vast search spaces that rely in particular on recombining parts of previous solutions. Crossover operators play a crucial role in this context. Here, we describe a large class of these operators designed for searching over spaces of graphs. These operators are based on introducing small cuts into graphs and rejoining the resulting induced subgraphs of two parents. This form of cut-and-join crossover can be restricted in a consistent way to preserve local properties such as vertex-degrees (valency), or bond-orders, as well as global properties such as graph-theoretic planarity. In contrast to crossover on strings, cut-and-join crossover on graphs is powerful enough to ergodically explore chemical space even in the absence of mutation operators. Extensive benchmarking shows that the offspring of molecular graphs are again plausible molecules with high probability, while at the same time crossover drastically increases the diversity compared to initial molecule libraries. Moreover, desirable properties such as favorable indices of synthesizability are preserved with sufficient frequency that candidate offsprings can be filtered efficiently for such properties. As an application we utilized the cut-and-join crossover in REvoLd, a GA-based system for computer-aided drug design. In optimization runs searching for ligands binding to four different target proteins we consistently found candidate molecules with binding constants exceeding the best known binders as well as candidates found in make-on-demand libraries. Taken together, cut-and-join crossover operators constitute a mathematically simple and well-characterized approach to recombination of molecules that performed very well in real-life CADD tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
naiyouqiu1989完成签到,获得积分10
4秒前
MRJJJJ完成签到,获得积分10
9秒前
whuhustwit完成签到,获得积分10
9秒前
满当当完成签到 ,获得积分10
10秒前
Hu完成签到,获得积分10
17秒前
Shandongdaxiu完成签到 ,获得积分10
17秒前
AA完成签到 ,获得积分10
18秒前
20秒前
Lucas应助小贩采纳,获得10
22秒前
Hu发布了新的文献求助10
23秒前
Neko完成签到,获得积分10
23秒前
24秒前
俊逸吐司完成签到 ,获得积分10
31秒前
稳重母鸡完成签到 ,获得积分10
32秒前
38秒前
45秒前
行云流水完成签到,获得积分10
50秒前
daggeraxe完成签到 ,获得积分10
50秒前
虞无声完成签到,获得积分10
50秒前
光亮若翠发布了新的文献求助10
50秒前
小支完成签到 ,获得积分10
56秒前
焦一丹完成签到 ,获得积分10
1分钟前
1分钟前
小明完成签到 ,获得积分10
1分钟前
kuyi完成签到 ,获得积分10
1分钟前
火星上誉完成签到 ,获得积分10
1分钟前
昏迷树袋熊完成签到 ,获得积分10
1分钟前
飘逸锦程完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
不甜的唐发布了新的文献求助10
1分钟前
yuyu877完成签到 ,获得积分10
1分钟前
李雨涵发布了新的文献求助10
1分钟前
hb完成签到,获得积分10
1分钟前
研友_VZG7GZ应助动听的雁枫采纳,获得10
1分钟前
1分钟前
自觉安荷完成签到 ,获得积分10
1分钟前
糖糖完成签到 ,获得积分10
1分钟前
1分钟前
微雨若,,完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5281665
求助须知:如何正确求助?哪些是违规求助? 4435953
关于积分的说明 13806865
捐赠科研通 4316234
什么是DOI,文献DOI怎么找? 2369210
邀请新用户注册赠送积分活动 1364528
关于科研通互助平台的介绍 1328018