Model predictive complex system control from observational and interventional data

计算机科学 机器学习 人工智能 观察研究 状态空间 复杂系统 模型预测控制 一般化 分布式计算 数据科学 控制(管理) 数学 统计 数学分析
作者
Muyun Mou,Yu Guo,Fan-Ming Luo,Yang Yu,Jiang Zhang
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (9)
标识
DOI:10.1063/5.0195208
摘要

Complex systems, characterized by intricate interactions among numerous entities, give rise to emergent behaviors whose data-driven modeling and control are of utmost significance, especially when there is abundant observational data but the intervention cost is high. Traditional methods rely on precise dynamical models or require extensive intervention data, often falling short in real-world applications. To bridge this gap, we consider a specific setting of the complex systems control problem: how to control complex systems through a few online interactions on some intervenable nodes when abundant observational data from natural evolution is available. We introduce a two-stage model predictive complex system control framework, comprising an offline pre-training phase that leverages rich observational data to capture spontaneous evolutionary dynamics and an online fine-tuning phase that uses a variant of model predictive control to implement intervention actions. To address the high-dimensional nature of the state-action space in complex systems, we propose a novel approach employing action-extended graph neural networks to model the Markov decision process of complex systems and design a hierarchical action space for learning intervention actions. This approach performs well in three complex system control environments: Boids, Kuramoto, and Susceptible-Infectious-Susceptible (SIS) metapopulation. It offers accelerated convergence, robust generalization, and reduced intervention costs compared to the baseline algorithm. This work provides valuable insights into controlling complex systems with high-dimensional state-action spaces and limited intervention data, presenting promising applications for real-world challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
桐桐应助郝老头采纳,获得10
2秒前
jayyong发布了新的文献求助30
2秒前
犹豫怀亦发布了新的文献求助10
3秒前
3秒前
思源应助赵博宇采纳,获得10
4秒前
花城完成签到 ,获得积分10
4秒前
5秒前
5秒前
limbo发布了新的文献求助10
5秒前
111完成签到,获得积分20
5秒前
6秒前
Amber发布了新的文献求助10
6秒前
李爱国应助生动映波采纳,获得10
6秒前
希望天下0贩的0应助Ke采纳,获得10
7秒前
7秒前
HCLonely应助fenfen采纳,获得10
8秒前
包容溪灵发布了新的文献求助10
8秒前
8秒前
zhenjl发布了新的文献求助10
9秒前
李啦啦完成签到,获得积分10
9秒前
9秒前
10秒前
Fred发布了新的文献求助10
10秒前
小郑好好搞科研完成签到,获得积分10
10秒前
wangtingyu发布了新的文献求助10
11秒前
12秒前
纪鹏飞发布了新的文献求助10
12秒前
li发布了新的文献求助10
13秒前
消消乐完成签到,获得积分10
14秒前
冲锋的大头菜完成签到,获得积分10
16秒前
星辰大海应助科研通管家采纳,获得10
17秒前
17秒前
嗯哼应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
一条迷人的咸鱼干完成签到,获得积分10
17秒前
17秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218664
求助须知:如何正确求助?哪些是违规求助? 2867783
关于积分的说明 8158089
捐赠科研通 2534833
什么是DOI,文献DOI怎么找? 1367236
科研通“疑难数据库(出版商)”最低求助积分说明 644974
邀请新用户注册赠送积分活动 618153