Model predictive complex system control from observational and interventional data

计算机科学 机器学习 人工智能 观察研究 状态空间 复杂系统 模型预测控制 一般化 分布式计算 数据科学 控制(管理) 数学 数学分析 统计
作者
Muyun Mou,Yu Guo,Fan-Ming Luo,Yang Yu,Jiang Zhang
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (9) 被引量:1
标识
DOI:10.1063/5.0195208
摘要

Complex systems, characterized by intricate interactions among numerous entities, give rise to emergent behaviors whose data-driven modeling and control are of utmost significance, especially when there is abundant observational data but the intervention cost is high. Traditional methods rely on precise dynamical models or require extensive intervention data, often falling short in real-world applications. To bridge this gap, we consider a specific setting of the complex systems control problem: how to control complex systems through a few online interactions on some intervenable nodes when abundant observational data from natural evolution is available. We introduce a two-stage model predictive complex system control framework, comprising an offline pre-training phase that leverages rich observational data to capture spontaneous evolutionary dynamics and an online fine-tuning phase that uses a variant of model predictive control to implement intervention actions. To address the high-dimensional nature of the state-action space in complex systems, we propose a novel approach employing action-extended graph neural networks to model the Markov decision process of complex systems and design a hierarchical action space for learning intervention actions. This approach performs well in three complex system control environments: Boids, Kuramoto, and Susceptible-Infectious-Susceptible (SIS) metapopulation. It offers accelerated convergence, robust generalization, and reduced intervention costs compared to the baseline algorithm. This work provides valuable insights into controlling complex systems with high-dimensional state-action spaces and limited intervention data, presenting promising applications for real-world challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
CodeCraft应助韦灵珊采纳,获得10
1秒前
香蕉觅云应助萨达采纳,获得10
1秒前
3秒前
隐形曼青应助fanfan采纳,获得10
3秒前
3秒前
任性迎南完成签到,获得积分10
4秒前
5秒前
可爱的函函应助gwentea采纳,获得10
5秒前
别喝他的酒完成签到,获得积分10
6秒前
大力丹琴完成签到,获得积分10
6秒前
㊣㊣发布了新的文献求助10
6秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
7秒前
强砸完成签到,获得积分10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
Bio应助科研通管家采纳,获得30
7秒前
sci_zt发布了新的文献求助10
7秒前
CipherSage应助科研通管家采纳,获得30
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
Hello应助无情干饭崽采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
7秒前
zyx完成签到 ,获得积分10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5140833
求助须知:如何正确求助?哪些是违规求助? 4339316
关于积分的说明 13515046
捐赠科研通 4178957
什么是DOI,文献DOI怎么找? 2291500
邀请新用户注册赠送积分活动 1292177
关于科研通互助平台的介绍 1234559