Predicting bone metastasis-free survival in non-small cell lung cancer from preoperative CT via deep learning

医学 一致性 接收机工作特性 肺癌 骨转移 放射科 转移 肿瘤科 内科学 脑转移 癌症
作者
Jia Guo,Jianguo Miao,Weikai Sun,Yanlei Li,Pei Nie,Wenjian Xu
出处
期刊:npj precision oncology [Nature Portfolio]
卷期号:8 (1) 被引量:1
标识
DOI:10.1038/s41698-024-00649-z
摘要

Accurate prediction of bone metastasis-free survival (BMFS) after complete surgical resection in patients with non-small cell lung cancer (NSCLC) may facilitate appropriate follow-up planning. The aim of this study was to establish and validate a preoperative CT-based deep learning (DL) signature to predict BMFS in NSCLC patients. We performed a retrospective analysis of 1547 NSCLC patients who underwent complete surgical resection, followed by at least 36 months of monitoring at two hospitals. We constructed a DL signature from multiparametric CT images using 3D convolutional neural networks, and we integrated this signature with clinical-imaging factors to establish a deep learning clinical-imaging signature (DLCS). We evaluated performance using Harrell's concordance index (C-index) and the time-dependent receiver operating characteristic. We also assessed the risk of bone metastasis (BM) in NSCLC patients at different clinical stages using DLCS. The DL signature successfully predicted BM, with C-indexes of 0.799 and 0.818 for the validation cohorts. DLCS outperformed the DL signature with corresponding C-indexes of 0.806 and 0.834. Ranges for area under the curve at 1, 2, and 3 years were 0.820-0.865 for internal and 0.860-0.884 for external validation cohorts. Furthermore, DLCS successfully stratified patients with different clinical stages of NSCLC as high- and low-risk groups for BM (p < 0.05). CT-based DL can predict BMFS in NSCLC patients undergoing complete surgical resection, and may assist in the assessment of BM risk for patients at different clinical stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Blue采纳,获得10
刚刚
葡萄成熟时完成签到,获得积分10
刚刚
自信念云发布了新的文献求助10
1秒前
pokikiii发布了新的文献求助10
1秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
cc发布了新的文献求助10
5秒前
6秒前
内向寒云发布了新的文献求助10
6秒前
6秒前
lin应助ecrrry采纳,获得10
6秒前
sunsiyu完成签到,获得积分10
6秒前
7秒前
李家奇发布了新的文献求助10
7秒前
nyddyy完成签到,获得积分10
7秒前
7秒前
8秒前
盛清让发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助TruongThe采纳,获得30
8秒前
猪猪hero应助高兴的半山采纳,获得10
9秒前
Rockicing完成签到,获得积分10
10秒前
搜集达人应助hyx9504采纳,获得10
10秒前
至此完成签到,获得积分10
10秒前
爆米花应助落后的采波采纳,获得10
10秒前
11秒前
猪猪hero应助123456采纳,获得10
11秒前
sunsiyu发布了新的文献求助10
12秒前
12秒前
12秒前
狗德拜发布了新的文献求助20
12秒前
李健的小迷弟应助hahaha采纳,获得10
13秒前
Shellbeaze完成签到,获得积分10
13秒前
13秒前
杨文志发布了新的文献求助10
13秒前
13秒前
化学y发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298