A novel approach to the cause of death identification—multi-strategy integration of multi-organ FTIR spectroscopy information using machine learning

化学 傅里叶变换红外光谱 鉴定(生物学) 光谱学 纳米技术 生化工程 化学工程 植物 物理 材料科学 量子力学 工程类 生物
作者
Hongli Xiong,Bi Wei,Yujing Huang,Jing Ma,Yongtai Zhang,Qi Wang,Yusen Wang,J.C. Li,Kai Yu
出处
期刊:Talanta [Elsevier]
卷期号:282: 127040-127040 被引量:1
标识
DOI:10.1016/j.talanta.2024.127040
摘要

Identifying the cause of death has always been a major focus and challenge in forensic practice and research. Traditional techniques for determining the causes of death are time-consuming, labor-intensive, have high professional barriers, and are vulnerable to significant subjective bias. Additionally, most current studies on causes of death are limited to specific organs and single causes. To overcome these challenges, this study utilized simple and rapid fourier transform infrared spectroscopy (FTIR) detection technology, integrating data from six organs-heart, liver, spleen, lung, kidney, and brain. The optimum model for identifying seven different causes of death was determined by evaluating the performance of models developed using the model efficiencies of single-organ (SO), single-organ model fusion (SOMF), multi-organ data fusion (MODF), and multi-organ data model fusion (MODMF) modeling methods. Considering factors such as operational costs, model performance, and model complexity, the MODF artificial neural network (ANN) model was found to be the most suitable choice for constructing a cause of death identification model, with a cross-validation mean accuracy of 0.960 and a test set accuracy of 0.952. The heart and kidney contributed more spectral features to the construction of the cause of death identification model compared to other organs. This study not only demonstrated that data fusion and model fusion are effective strategies for improving model performance but also provided a comprehensive data analysis framework and process for modeling with small sample multi-modal data (multiple organ data). In conclusion, by exploring various approaches, this study offers new solutions for identifying the cause of death.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lemona发布了新的文献求助10
刚刚
无辜紫菜完成签到,获得积分10
1秒前
2秒前
大模型应助哇哈哈采纳,获得30
3秒前
4秒前
nanmu完成签到,获得积分20
4秒前
小皮发布了新的文献求助10
5秒前
liuxinyu发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
大龙哥886应助熊熊采纳,获得10
8秒前
无极微光应助aliderichang采纳,获得20
9秒前
喵喵苗完成签到 ,获得积分10
10秒前
tianguan完成签到,获得积分10
12秒前
小叙完成签到 ,获得积分10
12秒前
infinite完成签到,获得积分10
13秒前
13秒前
13秒前
程公子完成签到,获得积分10
15秒前
Alarack发布了新的文献求助10
16秒前
humorlife完成签到,获得积分10
17秒前
19秒前
20秒前
21秒前
orixero应助kelexh采纳,获得10
21秒前
哇哈哈发布了新的文献求助30
25秒前
周梓萌完成签到,获得积分10
26秒前
科研通AI6应助六哥采纳,获得10
27秒前
蔡蔡完成签到 ,获得积分10
27秒前
28秒前
Amber发布了新的文献求助10
28秒前
glycine完成签到,获得积分10
29秒前
且慢应助cheryjay采纳,获得150
31秒前
晓舟发布了新的文献求助10
32秒前
小鬼完成签到 ,获得积分10
33秒前
风之子完成签到,获得积分10
33秒前
kelexh发布了新的文献求助10
34秒前
123完成签到,获得积分10
34秒前
欢喜的若灵完成签到,获得积分10
35秒前
且慢应助夜信采纳,获得20
35秒前
量子星尘发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832