A novel approach to the cause of death identification—multi-strategy integration of multi-organ FTIR spectroscopy information using machine learning

化学 傅里叶变换红外光谱 鉴定(生物学) 光谱学 纳米技术 生化工程 化学工程 植物 物理 材料科学 量子力学 工程类 生物
作者
Hongli Xiong,Bi Wei,Yujing Huang,Jing Ma,Yongtai Zhang,Li Wang,Wei Wang,J.C. Li,Kai Yu
出处
期刊:Talanta [Elsevier]
卷期号:282: 127040-127040
标识
DOI:10.1016/j.talanta.2024.127040
摘要

Identifying the cause of death has always been a major focus and challenge in forensic practice and research. Traditional techniques for determining the causes of death are time-consuming, labor-intensive, have high professional barriers, and are vulnerable to significant subjective bias. Additionally, most current studies on causes of death are limited to specific organs and single causes. To overcome these challenges, this study utilized simple and rapid fourier transform infrared spectroscopy (FTIR) detection technology, integrating data from six organs-heart, liver, spleen, lung, kidney, and brain. The optimum model for identifying seven different causes of death was determined by evaluating the performance of models developed using the model efficiencies of single-organ (SO), single-organ model fusion (SOMF), multi-organ data fusion (MODF), and multi-organ data model fusion (MODMF) modeling methods. Considering factors such as operational costs, model performance, and model complexity, the MODF artificial neural network (ANN) model was found to be the most suitable choice for constructing a cause of death identification model, with a cross-validation mean accuracy of 0.960 and a test set accuracy of 0.952. The heart and kidney contributed more spectral features to the construction of the cause of death identification model compared to other organs. This study not only demonstrated that data fusion and model fusion are effective strategies for improving model performance but also provided a comprehensive data analysis framework and process for modeling with small sample multi-modal data (multiple organ data). In conclusion, by exploring various approaches, this study offers new solutions for identifying the cause of death.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
InfoNinja应助科研通管家采纳,获得50
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
8秒前
niuniu完成签到,获得积分10
8秒前
像风一样完成签到,获得积分10
13秒前
14秒前
Maglev完成签到,获得积分10
15秒前
Lll完成签到,获得积分10
15秒前
华仔应助江流儿采纳,获得10
17秒前
安静成威完成签到 ,获得积分10
18秒前
18秒前
胡关完成签到,获得积分10
18秒前
英俊的铭应助niuniu采纳,获得10
19秒前
匹诺曹完成签到,获得积分10
20秒前
斯文念波发布了新的文献求助10
20秒前
starcatcher发布了新的文献求助10
20秒前
小丸完成签到,获得积分10
21秒前
懦弱的吐司完成签到 ,获得积分10
21秒前
23秒前
舒心傲蕾完成签到,获得积分10
24秒前
叁叁完成签到 ,获得积分10
25秒前
小丸发布了新的文献求助10
25秒前
文静的紫安完成签到,获得积分10
27秒前
xiaoKai完成签到 ,获得积分10
29秒前
Master完成签到 ,获得积分10
30秒前
30秒前
32秒前
lzb完成签到,获得积分10
33秒前
cy发布了新的文献求助50
34秒前
Allen发布了新的文献求助10
34秒前
郝宝真发布了新的文献求助10
37秒前
领导范儿应助恋雪采纳,获得10
38秒前
搜集达人应助huihuihui采纳,获得10
46秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388