A novel approach to the cause of death identification—multi-strategy integration of multi-organ FTIR spectroscopy information using machine learning

化学 傅里叶变换红外光谱 鉴定(生物学) 光谱学 纳米技术 生化工程 化学工程 植物 量子力学 生物 物理 工程类 材料科学
作者
Hongli Xiong,Bi Wei,Yujing Huang,Jing Ma,Yongtai Zhang,Qi Wang,Yusen Wang,J.C. Li,Kai Yu
出处
期刊:Talanta [Elsevier BV]
卷期号:282: 127040-127040
标识
DOI:10.1016/j.talanta.2024.127040
摘要

Identifying the cause of death has always been a major focus and challenge in forensic practice and research. Traditional techniques for determining the causes of death are time-consuming, labor-intensive, have high professional barriers, and are vulnerable to significant subjective bias. Additionally, most current studies on causes of death are limited to specific organs and single causes. To overcome these challenges, this study utilized simple and rapid fourier transform infrared spectroscopy (FTIR) detection technology, integrating data from six organs-heart, liver, spleen, lung, kidney, and brain. The optimum model for identifying seven different causes of death was determined by evaluating the performance of models developed using the model efficiencies of single-organ (SO), single-organ model fusion (SOMF), multi-organ data fusion (MODF), and multi-organ data model fusion (MODMF) modeling methods. Considering factors such as operational costs, model performance, and model complexity, the MODF artificial neural network (ANN) model was found to be the most suitable choice for constructing a cause of death identification model, with a cross-validation mean accuracy of 0.960 and a test set accuracy of 0.952. The heart and kidney contributed more spectral features to the construction of the cause of death identification model compared to other organs. This study not only demonstrated that data fusion and model fusion are effective strategies for improving model performance but also provided a comprehensive data analysis framework and process for modeling with small sample multi-modal data (multiple organ data). In conclusion, by exploring various approaches, this study offers new solutions for identifying the cause of death.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Szhou完成签到,获得积分10
刚刚
刚刚
1秒前
astalavista发布了新的文献求助10
2秒前
桂桂给桂桂的求助进行了留言
3秒前
4秒前
程新亮完成签到 ,获得积分10
4秒前
6秒前
Lucas应助知性的采珊采纳,获得10
6秒前
astalavista完成签到,获得积分10
6秒前
ch发布了新的文献求助10
7秒前
8秒前
氨基丁酸发布了新的文献求助10
8秒前
ding应助标致的耳机采纳,获得10
9秒前
sh完成签到,获得积分10
9秒前
10秒前
wanci应助nekoleaf采纳,获得10
10秒前
mj发布了新的文献求助10
10秒前
爆米花应助糯米糍采纳,获得10
11秒前
科研通AI5应助糯米糍采纳,获得10
11秒前
小二郎应助糯米糍采纳,获得10
11秒前
李健的小迷弟应助糯米糍采纳,获得10
11秒前
李健的小迷弟应助糯米糍采纳,获得10
11秒前
拉长的映阳应助糯米糍采纳,获得10
11秒前
科研轮回完成签到,获得积分10
11秒前
lv应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Bai应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得20
12秒前
图图应助科研通管家采纳,获得30
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
999999发布了新的文献求助10
13秒前
13秒前
14秒前
houyunfeng完成签到 ,获得积分10
16秒前
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782