已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel approach to the cause of death identification—multi-strategy integration of multi-organ FTIR spectroscopy information using machine learning

化学 傅里叶变换红外光谱 鉴定(生物学) 光谱学 纳米技术 生化工程 化学工程 植物 物理 材料科学 量子力学 工程类 生物
作者
Hongli Xiong,Bi Wei,Yujing Huang,Jing Ma,Yongtai Zhang,Qi Wang,Yusen Wang,J.C. Li,Kai Yu
出处
期刊:Talanta [Elsevier]
卷期号:282: 127040-127040 被引量:1
标识
DOI:10.1016/j.talanta.2024.127040
摘要

Identifying the cause of death has always been a major focus and challenge in forensic practice and research. Traditional techniques for determining the causes of death are time-consuming, labor-intensive, have high professional barriers, and are vulnerable to significant subjective bias. Additionally, most current studies on causes of death are limited to specific organs and single causes. To overcome these challenges, this study utilized simple and rapid fourier transform infrared spectroscopy (FTIR) detection technology, integrating data from six organs-heart, liver, spleen, lung, kidney, and brain. The optimum model for identifying seven different causes of death was determined by evaluating the performance of models developed using the model efficiencies of single-organ (SO), single-organ model fusion (SOMF), multi-organ data fusion (MODF), and multi-organ data model fusion (MODMF) modeling methods. Considering factors such as operational costs, model performance, and model complexity, the MODF artificial neural network (ANN) model was found to be the most suitable choice for constructing a cause of death identification model, with a cross-validation mean accuracy of 0.960 and a test set accuracy of 0.952. The heart and kidney contributed more spectral features to the construction of the cause of death identification model compared to other organs. This study not only demonstrated that data fusion and model fusion are effective strategies for improving model performance but also provided a comprehensive data analysis framework and process for modeling with small sample multi-modal data (multiple organ data). In conclusion, by exploring various approaches, this study offers new solutions for identifying the cause of death.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
招水若离完成签到,获得积分0
刚刚
1秒前
帅气忆霜完成签到,获得积分10
3秒前
独孤阳光完成签到,获得积分10
3秒前
4秒前
hai完成签到,获得积分20
6秒前
LavGEd发布了新的文献求助20
8秒前
小二郎应助草莓月亮采纳,获得10
13秒前
烟花应助今天心情好朋友采纳,获得10
13秒前
李健应助儒雅沛蓝采纳,获得10
15秒前
17秒前
科研通AI6应助LavGEd采纳,获得30
18秒前
冷静妙竹发布了新的文献求助10
19秒前
19秒前
21秒前
21秒前
康康小白杨完成签到 ,获得积分10
23秒前
23秒前
genesquared完成签到,获得积分10
23秒前
24秒前
Akim应助可耐的西装采纳,获得10
24秒前
雷晨晨完成签到 ,获得积分10
24秒前
24秒前
扳迪发布了新的文献求助10
26秒前
花开富贵完成签到 ,获得积分10
27秒前
nice1537完成签到,获得积分10
27秒前
王振兴完成签到 ,获得积分10
27秒前
难过龙猫完成签到,获得积分10
29秒前
小刘医生发布了新的文献求助10
29秒前
29秒前
科研通AI6应助JoJo采纳,获得30
30秒前
31秒前
彭于晏应助zz采纳,获得30
32秒前
红茶猫发布了新的文献求助10
32秒前
刘小蕊发布了新的文献求助20
33秒前
34秒前
Hilda007发布了新的文献求助30
36秒前
37秒前
源缘发布了新的文献求助20
38秒前
小蚂蚁完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355792
求助须知:如何正确求助?哪些是违规求助? 4487641
关于积分的说明 13970761
捐赠科研通 4388399
什么是DOI,文献DOI怎么找? 2411058
邀请新用户注册赠送积分活动 1403632
关于科研通互助平台的介绍 1377189