清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis

医学 胸椎 狭窄 外科 放射科 腰椎 腰椎
作者
Tun Liu,Jia Li,Huaguang Qi,Zhengtang Guo,Song‐Chuan Zhao,Baoping Zhang,Langbo Li,Gang Wu,Gang Wang
出处
期刊:Medical Science Monitor [International Scientific Information, Inc.]
卷期号:30
标识
DOI:10.12659/msm.945310
摘要

BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moonlin完成签到 ,获得积分10
1秒前
feiying88完成签到 ,获得积分10
13秒前
cadcae完成签到,获得积分10
20秒前
Raul完成签到 ,获得积分10
20秒前
风趣的冬卉完成签到 ,获得积分10
21秒前
开朗白开水完成签到 ,获得积分10
27秒前
陈炳蓉完成签到,获得积分10
38秒前
1234完成签到 ,获得积分10
43秒前
达克赛德完成签到 ,获得积分10
44秒前
海人完成签到 ,获得积分10
51秒前
凡高爱自由完成签到,获得积分10
55秒前
llll完成签到 ,获得积分10
1分钟前
夏林完成签到,获得积分10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
9527完成签到,获得积分10
1分钟前
热情的花瓣完成签到 ,获得积分10
2分钟前
MS903完成签到 ,获得积分10
2分钟前
属实有点拉胯完成签到 ,获得积分10
2分钟前
随心所欲完成签到 ,获得积分10
2分钟前
CJW完成签到 ,获得积分10
2分钟前
英姑应助健壮的芷容采纳,获得10
2分钟前
研友_8y2G0L完成签到,获得积分10
2分钟前
乐观的星月完成签到 ,获得积分10
2分钟前
3分钟前
aldehyde应助自渡采纳,获得10
3分钟前
重要英姑完成签到 ,获得积分10
3分钟前
一往无前发布了新的文献求助10
3分钟前
x银河里完成签到 ,获得积分10
3分钟前
moonlimb完成签到 ,获得积分10
3分钟前
3分钟前
新奇完成签到 ,获得积分10
3分钟前
Cole发布了新的文献求助10
3分钟前
本草石之寒温完成签到 ,获得积分10
3分钟前
一往无前完成签到,获得积分10
3分钟前
清爽笑翠完成签到 ,获得积分10
3分钟前
传奇完成签到 ,获得积分10
4分钟前
Cole完成签到,获得积分10
4分钟前
liuliu完成签到 ,获得积分10
4分钟前
lielizabeth完成签到 ,获得积分0
4分钟前
麻花阳应助科研通管家采纳,获得10
4分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555815
求助须知:如何正确求助?哪些是违规求助? 3131421
关于积分的说明 9391087
捐赠科研通 2831132
什么是DOI,文献DOI怎么找? 1556396
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890