Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis

医学 胸椎 狭窄 外科 放射科 腰椎 腰椎
作者
Tun Liu,Jia Li,Huaguang Qi,Zhengtang Guo,Song‐Chuan Zhao,Baoping Zhang,Langbo Li,Gang Wu,Gang Wang
出处
期刊:Medical Science Monitor [International Scientific Information, Inc.]
卷期号:30
标识
DOI:10.12659/msm.945310
摘要

BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助zhuojiu采纳,获得10
2秒前
2秒前
大闲鱼铭一完成签到 ,获得积分10
2秒前
哦哦哦完成签到,获得积分10
3秒前
4秒前
繁荣的从露完成签到,获得积分10
5秒前
6秒前
啊喔完成签到,获得积分20
7秒前
慕青应助jack采纳,获得10
8秒前
9秒前
团子发布了新的文献求助10
10秒前
10秒前
闲之野鹤完成签到,获得积分10
11秒前
健忘向露关注了科研通微信公众号
11秒前
wy.he应助易安采纳,获得10
12秒前
H_完成签到 ,获得积分10
13秒前
Lesley完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
甜甜奇迹发布了新的文献求助10
16秒前
完美世界应助十分喜欢采纳,获得10
16秒前
18秒前
keep完成签到 ,获得积分10
18秒前
科研通AI6应助啊喔采纳,获得10
18秒前
21秒前
23秒前
浮游应助丝竹丛中墨未干采纳,获得10
24秒前
灿灿发布了新的文献求助20
25秒前
Jie完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
上官若男应助Cyuan采纳,获得10
27秒前
29秒前
29秒前
甜甜奇迹完成签到,获得积分10
30秒前
32秒前
健忘向露发布了新的文献求助10
32秒前
石友瑶发布了新的文献求助10
34秒前
zouni完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759