Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis

医学 胸椎 狭窄 外科 放射科 腰椎 腰椎
作者
Tun Liu,Jia Li,Huaguang Qi,Zhengtang Guo,Song‐Chuan Zhao,Baoping Zhang,Langbo Li,Gang Wu,Gang Wang
出处
期刊:Medical Science Monitor [International Scientific Information, Inc.]
卷期号:30
标识
DOI:10.12659/msm.945310
摘要

BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助涳域采纳,获得10
2秒前
暗中讨饭应助我爱科研采纳,获得10
2秒前
3秒前
3秒前
4秒前
23完成签到,获得积分10
4秒前
一只羊完成签到 ,获得积分10
4秒前
安静发布了新的文献求助10
5秒前
db完成签到,获得积分10
7秒前
7秒前
脑洞疼应助xsc采纳,获得10
7秒前
薯仔完成签到,获得积分10
8秒前
隐形曼青应助我爱科研采纳,获得10
8秒前
zhouyu发布了新的文献求助10
8秒前
8秒前
nneuuv88发布了新的文献求助10
8秒前
Yuanyuan发布了新的文献求助10
9秒前
11秒前
hui发布了新的文献求助10
11秒前
THEFAN发布了新的文献求助10
12秒前
12秒前
Orange应助优美紫槐采纳,获得10
12秒前
星辰大海应助学生采纳,获得10
13秒前
22发布了新的文献求助10
13秒前
hsa_ID发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
爬起来学习应助香蕉妙菡采纳,获得10
13秒前
14秒前
蓓蓓发布了新的文献求助10
16秒前
16秒前
17秒前
华仔应助弦瑜采纳,获得10
17秒前
我是老大应助JamesYang采纳,获得10
18秒前
隐形曼青应助小白采纳,获得10
18秒前
心如止水发布了新的文献求助10
18秒前
xsc发布了新的文献求助10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
快乐的厉发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420