已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis

医学 胸椎 狭窄 外科 放射科 腰椎 腰椎
作者
Tun Liu,Jia Li,Huaguang Qi,Zhengtang Guo,Song‐Chuan Zhao,Baoping Zhang,Langbo Li,Gang Wu,Gang Wang
出处
期刊:Medical Science Monitor [International Scientific Information Inc.]
卷期号:30
标识
DOI:10.12659/msm.945310
摘要

BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lifel完成签到 ,获得积分10
刚刚
瘦瘦乌龟完成签到 ,获得积分10
1秒前
陀思妥耶夫斯基完成签到 ,获得积分10
1秒前
2秒前
3秒前
超人会飞233完成签到,获得积分10
3秒前
5秒前
熠旅完成签到,获得积分10
5秒前
linlin发布了新的文献求助10
6秒前
ZhaohuaXie应助goodgoodstudy采纳,获得10
6秒前
ddrose发布了新的文献求助10
6秒前
耶耶完成签到 ,获得积分10
8秒前
邓娅琴完成签到,获得积分10
9秒前
龍Ryu完成签到,获得积分10
11秒前
13秒前
15秒前
16秒前
16秒前
花深粥发布了新的文献求助10
17秒前
17秒前
雨霧雲完成签到,获得积分10
18秒前
乔峰发布了新的文献求助10
19秒前
linlin完成签到,获得积分10
19秒前
19秒前
21秒前
ZhaohuaXie应助goodgoodstudy采纳,获得10
21秒前
yuuu发布了新的文献求助10
21秒前
解语花发布了新的文献求助10
22秒前
忘桑榆完成签到,获得积分10
22秒前
任性的曼安完成签到 ,获得积分10
22秒前
萂昕完成签到 ,获得积分10
24秒前
予怀发布了新的文献求助10
24秒前
头孢西丁完成签到 ,获得积分10
25秒前
Lucas应助伶俐的高烽采纳,获得10
25秒前
xuli21315完成签到 ,获得积分10
27秒前
牛乃糖完成签到,获得积分10
28秒前
TY完成签到 ,获得积分10
28秒前
生姜批发刘哥完成签到 ,获得积分10
29秒前
ferritin完成签到 ,获得积分10
30秒前
善学以致用应助宋禄达采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5006450
求助须知:如何正确求助?哪些是违规求助? 4249851
关于积分的说明 13242181
捐赠科研通 4049849
什么是DOI,文献DOI怎么找? 2215504
邀请新用户注册赠送积分活动 1225423
关于科研通互助平台的介绍 1146075