Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis

医学 胸椎 狭窄 外科 放射科 腰椎 腰椎
作者
Tun Liu,Jia Li,Huaguang Qi,Zhengtang Guo,Song‐Chuan Zhao,Baoping Zhang,Langbo Li,Gang Wu,Gang Wang
出处
期刊:Medical Science Monitor [International Scientific Information Inc.]
卷期号:30
标识
DOI:10.12659/msm.945310
摘要

BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助木婉清采纳,获得10
2秒前
Hello应助却依然采纳,获得10
3秒前
Willy完成签到,获得积分10
6秒前
7秒前
7秒前
9秒前
11秒前
拉长的诗蕊完成签到,获得积分10
12秒前
小媛发布了新的文献求助10
13秒前
啊巴拉发布了新的文献求助10
14秒前
haha完成签到,获得积分20
15秒前
轩辕白竹发布了新的文献求助10
15秒前
16秒前
Anaero完成签到,获得积分10
16秒前
却依然发布了新的文献求助10
17秒前
17秒前
酷波er应助lbjcp3采纳,获得10
19秒前
ZiXuanCui完成签到,获得积分10
19秒前
852应助皮崇知采纳,获得10
20秒前
ding应助小媛采纳,获得10
20秒前
hzs完成签到,获得积分10
21秒前
22秒前
轩辕白竹完成签到,获得积分10
23秒前
啊巴拉完成签到,获得积分10
24秒前
小媛完成签到,获得积分10
25秒前
尊敬的花卷完成签到 ,获得积分10
25秒前
26秒前
刻苦的宛白完成签到,获得积分10
28秒前
科研圣体发布了新的文献求助10
29秒前
ewyzero发布了新的文献求助30
29秒前
29秒前
31秒前
32秒前
32秒前
司念者你发布了新的文献求助10
34秒前
34秒前
皮崇知发布了新的文献求助10
35秒前
36秒前
美好易烟发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450