亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis

医学 胸椎 狭窄 外科 放射科 腰椎 腰椎
作者
Tun Liu,Jia Li,Huaguang Qi,Zhengtang Guo,Song‐Chuan Zhao,Baoping Zhang,Langbo Li,Gang Wu,Gang Wang
出处
期刊:Medical Science Monitor [International Scientific Information, Inc.]
卷期号:30
标识
DOI:10.12659/msm.945310
摘要

BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Kiri_0661采纳,获得10
5秒前
明亮的代灵完成签到 ,获得积分10
18秒前
Yuki完成签到 ,获得积分10
21秒前
25秒前
一个小胖子完成签到,获得积分10
28秒前
Mingyue123发布了新的文献求助10
30秒前
Criminology34应助科研通管家采纳,获得10
58秒前
Criminology34应助科研通管家采纳,获得10
58秒前
LPPQBB应助科研通管家采纳,获得30
58秒前
58秒前
家欣完成签到 ,获得积分10
1分钟前
无花果应助清爽伯云采纳,获得30
1分钟前
科研通AI6应助ceeray23采纳,获得20
2分钟前
2分钟前
清爽伯云发布了新的文献求助30
2分钟前
清爽伯云完成签到,获得积分10
2分钟前
shaonianzu完成签到 ,获得积分10
2分钟前
寂寞的尔丝完成签到 ,获得积分10
2分钟前
ccc完成签到 ,获得积分10
2分钟前
coolplex完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
科目三应助艺玲采纳,获得10
3分钟前
3分钟前
艺玲发布了新的文献求助10
3分钟前
婉莹完成签到 ,获得积分0
4分钟前
陶醉巧凡完成签到,获得积分10
4分钟前
土土发布了新的文献求助10
4分钟前
LPPQBB应助科研通管家采纳,获得30
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
WXKennyS发布了新的文献求助10
5分钟前
阳光发布了新的文献求助10
6分钟前
导师求放过完成签到,获得积分0
6分钟前
水水的完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356933
求助须知:如何正确求助?哪些是违规求助? 4488558
关于积分的说明 13972332
捐赠科研通 4389593
什么是DOI,文献DOI怎么找? 2411660
邀请新用户注册赠送积分活动 1404209
关于科研通互助平台的介绍 1378273