Heterogeneous graph contrastive learning with adaptive data augmentation for semi‐supervised short text classification

计算机科学 人工智能 图形 机器学习 标记数据 模式识别(心理学) 数据挖掘 理论计算机科学
作者
Mingqiang Wu,Zhuoming Xu,Lei Zheng
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13744
摘要

Abstract Short text classification has been widely used in many fields. Due to the scarcity of labelled data, implementing short text classification under semi‐supervised learning setting has become increasingly popular. Semi‐supervised short text classification methods based on graph neural networks can achieve state‐of‐the‐art classification performance by utilizing the expressive power of graph neural networks. However, these methods usually fail to mine the hidden patterns of a large amount of short text node data in the graph to optimize the short text node embeddings, which limits the semantic representation power of the short texts, thus leading to suboptimal classification performance. To overcome the limitation, this paper proposes a novel semi‐supervised short text classification method called the Heterogeneous Graph Contrastive Learning with Adaptive Data Augmentation (HGCLADA). In the knowledge bases guided soft prompt‐based data augmentation component, the related words of the tag words are used to optimize the soft prompts for generating diverse augmented samples. In the heterogeneous graph contrastive learning framework component, a heterogeneous graph that is constructed using short texts and keywords and an effective edge augmentation scheme based on a short text clustering algorithm are proposed. The optimized short text embeddings can be obtained to achieve the effective semi‐supervised short text classification. Extensive experiments on six benchmark datasets show that our HGCLADA method outperforms four classes of state‐of‐the‐art methods in terms of classification accuracy, especially with significant performance improvements of 8.74% on the TagMyNews dataset when each class only contains 20 labelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andy1201完成签到,获得积分10
1秒前
majiawei关注了科研通微信公众号
1秒前
香蕉觅云应助王成健采纳,获得10
1秒前
2秒前
2秒前
大反应釜发布了新的文献求助10
3秒前
无私的芹应助大力日记本采纳,获得10
3秒前
3秒前
现代的访曼应助煎蛋采纳,获得20
3秒前
4秒前
大反应釜发布了新的文献求助10
4秒前
大反应釜发布了新的文献求助10
5秒前
大反应釜发布了新的文献求助30
5秒前
5秒前
年轻馒头发布了新的文献求助50
6秒前
Candy完成签到 ,获得积分10
6秒前
大反应釜发布了新的文献求助10
7秒前
大反应釜发布了新的文献求助10
7秒前
8秒前
8秒前
充电宝应助糟糕的日记本采纳,获得10
9秒前
尹翊君完成签到,获得积分10
10秒前
10秒前
zxc发布了新的文献求助30
10秒前
单向度的人完成签到,获得积分10
11秒前
我的文献呢应助iris采纳,获得30
11秒前
11秒前
尊敬熊完成签到,获得积分10
12秒前
majiawei发布了新的文献求助10
15秒前
15秒前
Mi完成签到 ,获得积分10
16秒前
bettylei发布了新的文献求助10
16秒前
科研人完成签到,获得积分10
17秒前
水静嫡发布了新的文献求助30
17秒前
17秒前
18秒前
18秒前
bkagyin应助Chanyl采纳,获得10
18秒前
19秒前
sususu完成签到,获得积分20
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032