Heterogeneous graph contrastive learning with adaptive data augmentation for semi‐supervised short text classification

计算机科学 人工智能 图形 机器学习 标记数据 模式识别(心理学) 数据挖掘 理论计算机科学
作者
Mingqiang Wu,Zhuoming Xu,Lei Zheng
出处
期刊:Expert Systems [Wiley]
标识
DOI:10.1111/exsy.13744
摘要

Abstract Short text classification has been widely used in many fields. Due to the scarcity of labelled data, implementing short text classification under semi‐supervised learning setting has become increasingly popular. Semi‐supervised short text classification methods based on graph neural networks can achieve state‐of‐the‐art classification performance by utilizing the expressive power of graph neural networks. However, these methods usually fail to mine the hidden patterns of a large amount of short text node data in the graph to optimize the short text node embeddings, which limits the semantic representation power of the short texts, thus leading to suboptimal classification performance. To overcome the limitation, this paper proposes a novel semi‐supervised short text classification method called the Heterogeneous Graph Contrastive Learning with Adaptive Data Augmentation (HGCLADA). In the knowledge bases guided soft prompt‐based data augmentation component, the related words of the tag words are used to optimize the soft prompts for generating diverse augmented samples. In the heterogeneous graph contrastive learning framework component, a heterogeneous graph that is constructed using short texts and keywords and an effective edge augmentation scheme based on a short text clustering algorithm are proposed. The optimized short text embeddings can be obtained to achieve the effective semi‐supervised short text classification. Extensive experiments on six benchmark datasets show that our HGCLADA method outperforms four classes of state‐of‐the‐art methods in terms of classification accuracy, especially with significant performance improvements of 8.74% on the TagMyNews dataset when each class only contains 20 labelled data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到,获得积分10
刚刚
欣喜书桃发布了新的文献求助10
2秒前
3秒前
哈密瓜爸爸完成签到,获得积分10
3秒前
巫马尔槐发布了新的文献求助10
5秒前
老实鞯发布了新的文献求助10
6秒前
6秒前
夏季完成签到,获得积分10
6秒前
8秒前
罗大黑呀发布了新的文献求助10
8秒前
8秒前
阔达静曼发布了新的文献求助10
9秒前
可乐发布了新的文献求助10
9秒前
9秒前
YJY完成签到,获得积分10
9秒前
苏藜发布了新的文献求助10
11秒前
11秒前
过儿过儿发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
tzq发布了新的文献求助10
12秒前
居居应助耍酷以柳采纳,获得10
12秒前
14秒前
16秒前
学习发布了新的文献求助10
16秒前
阿西吧完成签到,获得积分10
17秒前
18秒前
过儿过儿完成签到,获得积分10
19秒前
19秒前
19秒前
JamesPei应助典雅的蜡烛采纳,获得10
19秒前
lxk666发布了新的文献求助10
20秒前
tzq完成签到,获得积分10
20秒前
20秒前
QDF完成签到,获得积分10
21秒前
安详沛萍发布了新的文献求助10
21秒前
小蘑菇应助唯一采纳,获得10
21秒前
1257应助fdpb采纳,获得10
21秒前
地道的反差萌完成签到,获得积分20
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154185
求助须知:如何正确求助?哪些是违规求助? 2805059
关于积分的说明 7863283
捐赠科研通 2463232
什么是DOI,文献DOI怎么找? 1311173
科研通“疑难数据库(出版商)”最低求助积分说明 629464
版权声明 601821