Integrating System State into Spatio Temporal Graph Neural Network for Microservice Workload Prediction

计算机科学 工作量 人工神经网络 图形 国家(计算机科学) 人工智能 分布式计算 实时计算 理论计算机科学 操作系统 程序设计语言
作者
Yang Luo,Mohan Gao,Zhemeng Yu,Haoyuan Ge,Xiaofeng Gao,Tengwei Cai,Guihai Chen
标识
DOI:10.1145/3637528.3671508
摘要

Microservice architecture has become a driving force in enhancing the modularity and scalability of web applications, as evidenced by the Alipay platform's operational success. However, a prevalent issue within such infrastructures is the suboptimal utilization of CPU resources due to inflexible resource allocation policies. This inefficiency necessitates the development of dynamic, accurate workload prediction methods to improve resource allocation. In response to this challenge, we present STAMP, a Spatio Temporal Graph Network for Microservice Workload Prediction. STAMP is designed to comprehensively address the multifaceted interdependencies between microservices, the temporal variability of workloads, and the critical role of system state in resource utilization. Through a graph-based representation, STAMP effectively maps the intricate network of microservice interactions. It employs time series analysis to capture the dynamic nature of workload changes and integrates system state insights to enhance prediction accuracy. Our empirical analysis, using three distinct real-world datasets, establishes that STAMP exceeds baselines by achieving an average boost of 5.72% in prediction precision, as measured by RMSE. Upon deployment in Alipay's microservice environment, STAMP achieves a 33.10% reduction in resource consumption, significantly outperforming existing online methods. This research solidifies STAMP as a validated framework, offering meaningful contributions to the field of resource management in microservice architecture-based applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助烊驼采纳,获得10
刚刚
wangyanyan完成签到,获得积分10
刚刚
Brightan发布了新的文献求助10
1秒前
1秒前
勤恳易真发布了新的文献求助10
2秒前
2秒前
Akim应助愉快奇异果采纳,获得10
2秒前
郑建辉发布了新的文献求助10
3秒前
yaya发布了新的文献求助10
3秒前
3秒前
旧言颜延发布了新的文献求助10
3秒前
科研通AI6应助骑驴小猫采纳,获得10
4秒前
5秒前
5秒前
6秒前
帅的人发布了新的文献求助10
6秒前
7秒前
peiyu发布了新的文献求助10
7秒前
我是老大应助徐沛采纳,获得10
7秒前
魔幻蓉发布了新的文献求助10
8秒前
坚定珍发布了新的文献求助10
8秒前
long完成签到,获得积分10
8秒前
9秒前
samal完成签到 ,获得积分10
10秒前
lllllljx发布了新的文献求助10
10秒前
AHND完成签到 ,获得积分10
10秒前
11秒前
12秒前
lb发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
悬铃木发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
小易发布了新的文献求助10
16秒前
16秒前
TinTin完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589038
求助须知:如何正确求助?哪些是违规求助? 4671863
关于积分的说明 14789964
捐赠科研通 4627369
什么是DOI,文献DOI怎么找? 2532053
邀请新用户注册赠送积分活动 1500695
关于科研通互助平台的介绍 1468382