亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating System State into Spatio Temporal Graph Neural Network for Microservice Workload Prediction

计算机科学 工作量 人工神经网络 图形 国家(计算机科学) 人工智能 分布式计算 实时计算 理论计算机科学 操作系统 程序设计语言
作者
Yang Luo,Mohan Gao,Zhemeng Yu,Haoyuan Ge,Xiaofeng Gao,Tengwei Cai,Guihai Chen
标识
DOI:10.1145/3637528.3671508
摘要

Microservice architecture has become a driving force in enhancing the modularity and scalability of web applications, as evidenced by the Alipay platform's operational success. However, a prevalent issue within such infrastructures is the suboptimal utilization of CPU resources due to inflexible resource allocation policies. This inefficiency necessitates the development of dynamic, accurate workload prediction methods to improve resource allocation. In response to this challenge, we present STAMP, a Spatio Temporal Graph Network for Microservice Workload Prediction. STAMP is designed to comprehensively address the multifaceted interdependencies between microservices, the temporal variability of workloads, and the critical role of system state in resource utilization. Through a graph-based representation, STAMP effectively maps the intricate network of microservice interactions. It employs time series analysis to capture the dynamic nature of workload changes and integrates system state insights to enhance prediction accuracy. Our empirical analysis, using three distinct real-world datasets, establishes that STAMP exceeds baselines by achieving an average boost of 5.72% in prediction precision, as measured by RMSE. Upon deployment in Alipay's microservice environment, STAMP achieves a 33.10% reduction in resource consumption, significantly outperforming existing online methods. This research solidifies STAMP as a validated framework, offering meaningful contributions to the field of resource management in microservice architecture-based applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
为你钟情完成签到 ,获得积分10
2秒前
4秒前
11秒前
爆米花应助冬虫夏草采纳,获得10
13秒前
潘名超完成签到,获得积分10
14秒前
橙汁发布了新的文献求助10
16秒前
六六六完成签到 ,获得积分10
17秒前
18秒前
21秒前
22秒前
Ava应助陈陈要毕业采纳,获得10
22秒前
大模型应助橙汁采纳,获得10
23秒前
冬虫夏草发布了新的文献求助10
25秒前
jar7989发布了新的文献求助10
28秒前
DOO完成签到,获得积分10
28秒前
30秒前
Criminology34应助Ww采纳,获得10
32秒前
33秒前
kdjc完成签到 ,获得积分10
34秒前
JAMAaccepted发布了新的文献求助10
35秒前
hjjjj发布了新的文献求助10
36秒前
若宫伊芙应助科研通管家采纳,获得10
37秒前
若宫伊芙应助科研通管家采纳,获得10
37秒前
若宫伊芙应助科研通管家采纳,获得10
37秒前
37秒前
若宫伊芙应助科研通管家采纳,获得10
37秒前
fangdonghai发布了新的文献求助10
37秒前
所所应助hjjjj采纳,获得10
46秒前
47秒前
47秒前
jar7989完成签到,获得积分10
48秒前
ljh024完成签到,获得积分10
55秒前
1分钟前
尚尚发布了新的文献求助10
1分钟前
1分钟前
Raunio完成签到,获得积分10
1分钟前
是榤啊完成签到 ,获得积分10
1分钟前
震动的平松完成签到 ,获得积分10
1分钟前
JamesPei应助执着的忆曼采纳,获得30
1分钟前
ANKAR完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664034
求助须知:如何正确求助?哪些是违规求助? 4856893
关于积分的说明 15107044
捐赠科研通 4822496
什么是DOI,文献DOI怎么找? 2581475
邀请新用户注册赠送积分活动 1535694
关于科研通互助平台的介绍 1493921