Integrating System State into Spatio Temporal Graph Neural Network for Microservice Workload Prediction

计算机科学 工作量 人工神经网络 图形 国家(计算机科学) 人工智能 分布式计算 实时计算 理论计算机科学 操作系统 程序设计语言
作者
Yang Luo,Mohan Gao,Zhemeng Yu,Haoyuan Ge,Xiaofeng Gao,Tengwei Cai,Guihai Chen
标识
DOI:10.1145/3637528.3671508
摘要

Microservice architecture has become a driving force in enhancing the modularity and scalability of web applications, as evidenced by the Alipay platform's operational success. However, a prevalent issue within such infrastructures is the suboptimal utilization of CPU resources due to inflexible resource allocation policies. This inefficiency necessitates the development of dynamic, accurate workload prediction methods to improve resource allocation. In response to this challenge, we present STAMP, a Spatio Temporal Graph Network for Microservice Workload Prediction. STAMP is designed to comprehensively address the multifaceted interdependencies between microservices, the temporal variability of workloads, and the critical role of system state in resource utilization. Through a graph-based representation, STAMP effectively maps the intricate network of microservice interactions. It employs time series analysis to capture the dynamic nature of workload changes and integrates system state insights to enhance prediction accuracy. Our empirical analysis, using three distinct real-world datasets, establishes that STAMP exceeds baselines by achieving an average boost of 5.72% in prediction precision, as measured by RMSE. Upon deployment in Alipay's microservice environment, STAMP achieves a 33.10% reduction in resource consumption, significantly outperforming existing online methods. This research solidifies STAMP as a validated framework, offering meaningful contributions to the field of resource management in microservice architecture-based applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyang发布了新的文献求助10
1秒前
Dan完成签到,获得积分20
1秒前
2秒前
ding应助cjs采纳,获得10
2秒前
wang完成签到,获得积分10
4秒前
无情曼易发布了新的文献求助10
4秒前
6秒前
7秒前
8秒前
8秒前
victorchen完成签到,获得积分10
8秒前
10秒前
不爱吃鱼的猫完成签到,获得积分10
11秒前
Lucas应助1900th采纳,获得10
12秒前
12秒前
13秒前
13秒前
于水清发布了新的文献求助20
14秒前
Wl0115发布了新的文献求助10
14秒前
木日发布了新的文献求助10
14秒前
甜甜完成签到 ,获得积分20
15秒前
cjs发布了新的文献求助10
15秒前
16秒前
16秒前
飘逸的苡发布了新的文献求助10
16秒前
22222发布了新的文献求助10
17秒前
Orijump发布了新的文献求助10
18秒前
Owen应助SMLW采纳,获得10
18秒前
木槿完成签到,获得积分10
19秒前
20秒前
嘎嘎发布了新的文献求助10
20秒前
RJ完成签到,获得积分10
20秒前
21秒前
21秒前
火火吴发布了新的文献求助10
22秒前
jenningseastera应助研友_VZG64n采纳,获得10
23秒前
熊熊发布了新的文献求助10
25秒前
旺仔先生完成签到,获得积分0
25秒前
yangzai发布了新的文献求助10
26秒前
FashionBoy应助不想太多采纳,获得10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150