学位(音乐)
估计
计量经济学
学位分布
统计
研究异质性
数学
节点(物理)
空间异质性
计算机科学
经济
复杂网络
生态学
组合数学
生物
物理
管理
声学
置信区间
结构工程
工程类
作者
Zheng Tracy Ke,Jingming Wang
标识
DOI:10.1080/01621459.2024.2388903
摘要
Real networks often have severe degree heterogeneity, with maximum, average, and minimum node degrees differing significantly. This paper examines the impact of degree heterogeneity on statistical limits of network data analysis. Introducing the empirical heterogeneity distribution (EHD) under a degree-corrected mixed membership model, we show that the optimal rate of mixed membership estimation is an explicit functional of the EHD. This result confirms that severe degree heterogeneity decelerates the error rate, even when the overall sparsity remains unchanged.
科研通智能强力驱动
Strongly Powered by AbleSci AI