神经毒性
后代
失调家庭
生物
生理学
细胞生物学
神经科学
医学
内科学
毒性
遗传学
临床心理学
怀孕
作者
Xing Li,Erkai He,Guangquan Chen,Xinde Cao,Ling Zhao,Xiaoyun Xu,Zhuozhong Fu,Hao Qiu
标识
DOI:10.1016/j.envint.2024.109026
摘要
Nanoplastics (NPs) are ubiquitous in daily life, posing potential risks to the environment and human. While their negative effects on parental organisms have been extensively studied, intergenerational effects are still in the early stages of investigation. Here, we aimed to investigate the impact of maternal exposure to an environmentally relevant level of polystyrene NPs (PSNPs, 100 nm) during gestation and lactation (∼32 days, 50 μg/mouse/day) on neurotoxicity mediated by the microbe-gut-brain axis in offspring mice. Maternal PSNPs exposure significantly increased brain TNF-α level and microglia by 1.43 and 1.48 folds respectively, compared to control, accompanied by nuclear pyknosis and cell vacuolization in cortex and hippocampus. Targeted neurotransmitter metabolomics analysis revealed dysregulation in dopamine and serotonin metabolism. Specifically, dopamine levels increased significantly from 0.007 ng/L to 0.015 ng/L, while N-acetylseroton and 3,4-dihydroxyphenylacetic acid decreased significantly from 0.002 and 0.929 ng/L to 0.001 and 0.680 ng/L, respectively. Through a combination of 16S rRNA sequencing and biochemical analysis, we discovered that maternal PSNPs exposure led to a depletion of anti-inflammatory bacteria and an enrichment of pro-inflammatory bacteria resulting in intestinal barrier damage, elevated levels of lipopolysaccharide in blood, and subsequent activation of neuroinflammation. Meanwhile, gut bacteria dysbiosis interfered with communication between gut and brain by dysregulating neurotransmitter synthesis, as evidenced by significant associations between neurotransmitter-related bacteria (Akkermansia, Family_XIII_AD3011_group, Lachnoclostridium) and dopamine/serotonin related metabolites. Furthermore, transcriptional alterations in dopamine and serotonin related pathways were observed in the enteric nervous system, suggesting abnormal signal transduction from gut to brain contributes to neurotoxicity. This study provides new insights into NPs-induced neurotoxicity within the context of microbe-gut-brain axis and highlights the risk of cerebral dysfunction in offspring with maternal NPs exposure.
科研通智能强力驱动
Strongly Powered by AbleSci AI