Multimodal Image Fusion Workflow Incorporating MALDI Imaging Mass Spectrometry and Microscopy for the Study of Small Pharmaceutical Compounds

质谱成像 质谱法 马尔迪成像 显微镜 化学 人工智能 图像分辨率 荧光寿命成像显微镜 计算机科学 基质辅助激光解吸/电离 病理 光学 荧光 物理 色谱法 医学 有机化学 吸附 解吸
作者
Zhongling Liang,Yinping Guo,Abhisheak Sharma,Christopher R. McCurdy,Boone M. Prentice
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (29): 11869-11880
标识
DOI:10.1021/acs.analchem.4c01553
摘要

Multimodal imaging analyses of dosed tissue samples can provide more comprehensive insights into the effects of a therapeutically active compound on a target tissue compared to single-modal imaging. For example, simultaneous spatial mapping of pharmaceutical compounds and endogenous macromolecule receptors is difficult to achieve in a single imaging experiment. Herein, we present a multimodal workflow combining imaging mass spectrometry with immunohistochemistry (IHC) fluorescence imaging and brightfield microscopy imaging. Imaging mass spectrometry enables direct mapping of pharmaceutical compounds and metabolites, IHC fluorescence imaging can visualize large proteins, and brightfield microscopy imaging provides tissue morphology information. Single-cell resolution images are generally difficult to acquire using imaging mass spectrometry but are readily acquired with IHC fluorescence and brightfield microscopy imaging. Spatial sharpening of mass spectrometry images would thus allow for higher fidelity coregistration with other higher-resolution microscopy images. Imaging mass spectrometry spatial resolution can be predicted to a finer value via a computational image fusion workflow, which models the relationship between the intensity values in the mass spectrometry image and the features of a high-spatial resolution microscopy image. As a proof of concept, our multimodal workflow was applied to brain tissue extracted from a Sprague-Dawley rat dosed with a kratom alkaloid, corynantheidine. Four candidate mathematical models, including linear regression, partial least-squares regression, random forest regression, and two-dimensional convolutional neural network (2-D CNN), were tested. The random forest and 2-D CNN models most accurately predicted the intensity values at each pixel as well as the overall patterns of the mass spectrometry images, while also providing the best spatial resolution enhancements. Herein, image fusion enabled predicted mass spectrometry images of corynantheidine, GABA, and glutamine to approximately 2.5 μm spatial resolutions, a significant improvement compared to the original images acquired at 25 μm spatial resolution. The predicted mass spectrometry images were then coregistered with an H&E image and IHC fluorescence image of the μ-opioid receptor to assess colocalization of corynantheidine with brain cells. Our study also provides insights into the different evaluation parameters to consider when utilizing image fusion for biological applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助愉快的千柳采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Grayball应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
绝世容颜完成签到,获得积分10
3秒前
青衍应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Grayball应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
深情安青应助Kong采纳,获得10
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
饱满的山菡完成签到,获得积分10
6秒前
6秒前
碳碳双键完成签到,获得积分10
7秒前
Baebabeo完成签到 ,获得积分10
7秒前
bkagyin应助金鱼咕噜噜luu采纳,获得10
8秒前
旭宝儿发布了新的文献求助10
8秒前
10秒前
苦行僧完成签到,获得积分10
10秒前
Li完成签到,获得积分10
10秒前
11秒前
简晴完成签到,获得积分10
12秒前
Owen应助大大大采纳,获得10
14秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046