已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Survey of Computer Vision Detection, Visual SLAM Algorithms, and Their Applications in Energy-Efficient Autonomous Systems

计算机科学 人工智能 背景(考古学) 机器视觉 能源消耗 目标检测 机器人学 机器人 深度学习 算法 机器学习 计算机视觉 工程类 模式识别(心理学) 古生物学 电气工程 生物
作者
Lu Chen,Gun Li,Weisi Xie,Jie Tan,Yang Li,Junfeng Pu,Lizhu Chen,Decheng Gan,Weimin Shi
出处
期刊:Energies [MDPI AG]
卷期号:17 (20): 5177-5177 被引量:2
标识
DOI:10.3390/en17205177
摘要

Within the area of environmental perception, automatic navigation, object detection, and computer vision are crucial and demanding fields with many applications in modern industries, such as multi-target long-term visual tracking in automated production, defect detection, and driverless robotic vehicles. The performance of computer vision has greatly improved recently thanks to developments in deep learning algorithms and hardware computing capabilities, which have spawned the creation of a large number of related applications. At the same time, with the rapid increase in autonomous systems in the market, energy consumption has become an increasingly critical issue in computer vision and SLAM (Simultaneous Localization and Mapping) algorithms. This paper presents the results of a detailed review of over 100 papers published over the course of two decades (1999–2024), with a primary focus on the technical advancement in computer vision. To elucidate the foundational principles, an examination of typical visual algorithms based on traditional correlation filtering was initially conducted. Subsequently, a comprehensive overview of the state-of-the-art advancements in deep learning-based computer vision techniques was compiled. Furthermore, a comparative analysis of conventional and novel algorithms was undertaken to discuss the future trends and directions of computer vision. Lastly, the feasibility of employing visual SLAM algorithms in the context of autonomous vehicles was explored. Additionally, in the context of intelligent robots for low-carbon, unmanned factories, we discussed model optimization techniques such as pruning and quantization, highlighting their importance in enhancing energy efficiency. We conducted a comprehensive comparison of the performance and energy consumption of various computer vision algorithms, with a detailed exploration of how to balance these factors and a discussion of potential future development trends.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
气泡水完成签到 ,获得积分10
2秒前
4秒前
Hosea完成签到 ,获得积分10
5秒前
善学以致用应助sss采纳,获得10
8秒前
10秒前
一路向南发布了新的文献求助10
10秒前
春日奶黄包完成签到 ,获得积分10
12秒前
我是站长才怪应助ZXR采纳,获得30
13秒前
15秒前
貔貅发布了新的文献求助10
15秒前
研友_ZzrWKZ完成签到 ,获得积分10
16秒前
稚气满满完成签到 ,获得积分10
18秒前
nanfang完成签到 ,获得积分10
18秒前
19秒前
19秒前
酷酷问夏完成签到 ,获得积分10
19秒前
fransiccarey完成签到,获得积分10
21秒前
sss完成签到 ,获得积分10
21秒前
Mycee完成签到 ,获得积分10
22秒前
27秒前
冷静新烟完成签到,获得积分10
27秒前
李爱国应助一路向南采纳,获得10
28秒前
开心罡完成签到 ,获得积分10
30秒前
31秒前
LU完成签到 ,获得积分10
33秒前
书文混四方完成签到 ,获得积分10
33秒前
英姑应助科研通管家采纳,获得10
36秒前
桐桐应助科研通管家采纳,获得10
36秒前
CipherSage应助科研通管家采纳,获得10
36秒前
大模型应助科研通管家采纳,获得10
36秒前
sss发布了新的文献求助10
36秒前
文欣完成签到 ,获得积分10
37秒前
李文思完成签到 ,获得积分10
39秒前
linuo完成签到,获得积分10
40秒前
du完成签到 ,获得积分10
41秒前
有趣的银完成签到,获得积分10
44秒前
45秒前
香蕉觅云应助执着的从阳采纳,获得30
47秒前
sss完成签到,获得积分10
48秒前
冷静的莞完成签到 ,获得积分10
50秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3407677
求助须知:如何正确求助?哪些是违规求助? 3012208
关于积分的说明 8853047
捐赠科研通 2699360
什么是DOI,文献DOI怎么找? 1479980
科研通“疑难数据库(出版商)”最低求助积分说明 684124
邀请新用户注册赠送积分活动 678380