Light-Activated Virtual Sensor Array with Machine Learning for Non-Invasive Diagnosis of Coronary Heart Disease

气味 冠心病 材料科学 分子 生物医学工程 内科学 医学 化学 有机化学
作者
Jiawang Hu,Hao Qian,Sanyang Han,Zhang Ping,Yuan Lü
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1) 被引量:1
标识
DOI:10.1007/s40820-024-01481-7
摘要

Abstract Early non-invasive diagnosis of coronary heart disease (CHD) is critical. However, it is challenging to achieve accurate CHD diagnosis via detecting breath. In this work, heterostructured complexes of black phosphorus (BP) and two-dimensional carbide and nitride (MXene) with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy. A light-activated virtual sensor array (LAVSA) based on BP/Ti 3 C 2 T x was prepared under photomodulation and further assembled into an instant gas sensing platform (IGSP). In addition, a machine learning (ML) algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD. Due to the synergistic effect of BP and Ti 3 C 2 T x as well as photo excitation, the synthesized heterostructured complexes exhibited higher performance than pristine Ti 3 C 2 T x , with a response value 26% higher than that of pristine Ti 3 C 2 T x . In addition, with the help of a pattern recognition algorithm, LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols, ketones, aldehydes, esters, and acids. Meanwhile, with the assistance of ML, the IGSP achieved 69.2% accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients. In conclusion, an immediate, low-cost, and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD, which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昏睡的岂愈完成签到 ,获得积分10
1秒前
泡泡完成签到,获得积分10
1秒前
所所应助myx采纳,获得10
1秒前
Lucas应助qqqq采纳,获得10
1秒前
Akim应助小黑爱搞科研采纳,获得10
1秒前
Armolt完成签到,获得积分10
1秒前
赤木晴子关注了科研通微信公众号
1秒前
2秒前
2秒前
天天快乐应助lili采纳,获得10
3秒前
Del完成签到,获得积分10
3秒前
4秒前
旅行的邱邱子完成签到,获得积分10
4秒前
5秒前
ag完成签到 ,获得积分10
5秒前
yy122完成签到,获得积分20
7秒前
15256397832发布了新的文献求助10
7秒前
小不溜发布了新的文献求助10
7秒前
所所应助Muran采纳,获得10
8秒前
whandzxl发布了新的文献求助10
8秒前
8秒前
wanci应助漂亮幻莲采纳,获得10
8秒前
ysynqqr完成签到,获得积分10
8秒前
heart发布了新的文献求助10
9秒前
9秒前
10秒前
王雨晴完成签到,获得积分10
10秒前
577完成签到,获得积分10
11秒前
田様应助yy122采纳,获得10
12秒前
黑山老妖发布了新的文献求助10
13秒前
14秒前
14秒前
徐徐发布了新的文献求助10
14秒前
小洪俊熙完成签到,获得积分10
14秒前
芦泸完成签到,获得积分10
15秒前
bifeifei完成签到,获得积分10
15秒前
qqqq发布了新的文献求助10
15秒前
15秒前
heart完成签到,获得积分10
15秒前
hug完成签到,获得积分0
16秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206078
求助须知:如何正确求助?哪些是违规求助? 2855402
关于积分的说明 8099348
捐赠科研通 2520496
什么是DOI,文献DOI怎么找? 1353397
科研通“疑难数据库(出版商)”最低求助积分说明 641741
邀请新用户注册赠送积分活动 612821