Machine learning-based real time identification of driver posture during driving

分散注意力 方向盘 支持向量机 计算机科学 驾驶模拟器 人工智能 模拟 制动器 接口(物质) 扭矩 计算机视觉 工程类 汽车工程 心理学 最大气泡压力法 气泡 神经科学 并行计算 物理 热力学
作者
A. Emre Cetin,Erhan Akdoğan,Suden Battal,Ceyhun Ibolar
标识
DOI:10.1177/09544070241265398
摘要

The detection of driver distractions is exceptionally important for driving safety. Driver distraction can originate from various sources such as external tasks (e.g., texting or eating) or mental states (e.g., sleepiness, tiredness, anger, and tension). To detect these conditions, most of the previous studies were based on vision-based techniques. These techniques are affected by environmental factors (e.g., day, night, and facial accessories such as glasses and hats). However, the steering wheel is an interface that provides a direct relationship between the driver and vehicle. The driver’s interaction can effectively reflect this behavior and mental state. This study introduced a new method for detecting driver distractions by utilizing force/torque (F/T) sensor data extracted from the steering wheel. An experimental setup was designed and developed to measure the accuracy of the proposed method. To validate the strategy, a machine learning-based algorithm was developed. It demonstrated remarkable performance in determining the position of the driver’s hand on the steering wheel and in inferring with high precision the hand the driver uses to operate the vehicle. The method produced accurate results in all the grip ranges that could be held by the driver within the range of 0°–360°. The support vector machine (SVM) method was used in machine learning. It predicted with a 91.1% accuracy rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
dhu_johnny完成签到,获得积分10
4秒前
4秒前
李十七发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
aldehyde应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
柯一一应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
帅男发布了新的文献求助10
6秒前
提拉米草完成签到,获得积分10
7秒前
7秒前
七曜发布了新的文献求助10
7秒前
Muhammad发布了新的文献求助10
8秒前
奥特超曼应助飞飞飞采纳,获得10
8秒前
dhu_johnny发布了新的文献求助30
9秒前
9秒前
10秒前
恋雅颖月应助辣辣辣辣辣采纳,获得10
10秒前
田様应助州府十三采纳,获得10
10秒前
Accepted发布了新的文献求助10
11秒前
微甜发布了新的文献求助30
12秒前
13秒前
15秒前
Accepted完成签到,获得积分10
16秒前
Wcx完成签到,获得积分10
16秒前
打打应助chang采纳,获得10
17秒前
19秒前
李博士完成签到,获得积分10
22秒前
22秒前
hefang发布了新的文献求助10
23秒前
23秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176