A Mycorrhiza‐Induced UDP‐Glucosyl Transferase Negatively Regulates the Arbuscular Mycorrhizal Symbiosis

共生 龙葵 生物 丛枝菌根 糖基转移酶 菌根 葡萄糖基转移酶 生物化学 莲藕 植物 细胞生物学 基因 细菌 遗传学
作者
Jiadong Chen,Qing‐Chun Zhao,Kun Xie,Mengna Wang,Lianqing Li,Dechao Zeng,Qiuli Wang,Shuangshuang Wang,Aiqun Chen,Guohua Xu
出处
期刊:Plant Cell and Environment [Wiley]
标识
DOI:10.1111/pce.15241
摘要

ABSTRACT Most terrestrial plants can establish a reciprocal symbiosis with arbuscular mycorrhizal (AM) fungi to cope with adverse environmental stresses. The development of AM symbiosis is energetically costly and needs to be dynamically controlled by plants to maintain the association at mutual beneficial levels. Multiple components involved in the autoregulation of mycorrhiza (AOM) have been recently identified from several plant species; however, the mechanisms underlying the feedback regulation of AM symbiosis remain largely unknown. Here, we report that AM colonization promotes the flavonol biosynthesis pathway in tomato ( Solanum lycopersicum ), and an AM‐specific UDP‐glucosyltransferase SlUGT132, which probably has the flavonol glycosylation activity, negatively regulates AM development. SlUGT132 was predominantly expressed in the arbuscule‐containing cells, and its knockout or knockdown mutants showed increased soluble sugar content, root colonization level and arbuscule formation. Conversely, overexpression of SlUGT132 resulted in declined soluble sugar content and mycorrhization degree. Metabolomic assay revealed decreased contents of astragalin, tiliroside and cynaroside in slugt132 mycorrhizal roots, but increased accumulation of these flavonoid glycosides in SlUGT132‐ overexpressing plant roots. Our results highlight the presence of a novel, SlUGT132‐mediated AOM mechanism, which enable plants to flexibly control the accumulation of soluble sugars and flavonoid glycosides in mycorrhizal roots and modulate colonization levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
why完成签到,获得积分20
刚刚
weqewqweqw发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
user123发布了新的文献求助10
3秒前
3秒前
视野胤完成签到,获得积分10
3秒前
在水一方发布了新的文献求助10
3秒前
3秒前
3秒前
木子完成签到,获得积分10
4秒前
switch发布了新的文献求助10
5秒前
视野胤发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
十言完成签到,获得积分10
6秒前
7秒前
云落发布了新的文献求助10
8秒前
9秒前
畅快尔槐完成签到,获得积分10
9秒前
YingYing完成签到,获得积分10
9秒前
222发布了新的文献求助10
9秒前
Jasper应助羊角包采纳,获得10
10秒前
投石问路发布了新的文献求助20
11秒前
11秒前
奇奇吃面完成签到,获得积分10
11秒前
cctv18完成签到,获得积分0
12秒前
江江完成签到 ,获得积分10
13秒前
LXZ发布了新的文献求助10
13秒前
充电宝应助switch采纳,获得10
13秒前
14秒前
link171完成签到,获得积分10
14秒前
ZHANGCHAOHANG发布了新的文献求助10
14秒前
14秒前
鼠鼠想养猫完成签到,获得积分10
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148736
求助须知:如何正确求助?哪些是违规求助? 2799755
关于积分的说明 7836820
捐赠科研通 2457225
什么是DOI,文献DOI怎么找? 1307810
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663