A survey on feature extraction and learning techniques for link prediction in homogeneous and heterogeneous complex networks

同种类的 计算机科学 链接(几何体) 人工智能 机器学习 萃取(化学) 特征(语言学) 数据挖掘 计算机网络 数学 语言学 化学 哲学 色谱法 组合数学
作者
Puneet Kapoor,Sakshi Kaushal,Harish Kumar,Kushal Kanwar
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:57 (12)
标识
DOI:10.1007/s10462-024-10998-7
摘要

Complex networks are commonly observed in several real-world areas, such as social, biological, and technical systems, where they exhibit complicated patterns of connectedness and organised clusters. These networks have intricate topological characteristics that frequently elude conventional characterization. Link prediction in complex networks, like data flow in telecommunications networks, protein interactions in biological systems, and social media interactions on platforms like Facebook, etc., is an essential element of network analytics and presents fresh research challenges. Consequently, there is a growing emphasis in research on creating new link prediction methods for different network applications. This survey investigates several strategies related to link prediction, ranging from feature extraction based to feature learning based techniques, with a specific focus on their utilisation in dynamic and developing network topologies. Furthermore, this paper emphasises on a wide variety of feature learning techniques that go beyond basic feature extraction and matrix factorization. It includes advanced learning-based algorithms and neural network techniques specifically designed for link prediction. The study also presents evaluation results of different link prediction techniques on homogeneous and heterogeneous network datasets, and provides a thorough examination of existing methods and potential areas for further investigation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jjaigll12完成签到 ,获得积分10
刚刚
CodeCraft应助冷静的嫣然采纳,获得10
2秒前
Ly啦啦啦关注了科研通微信公众号
2秒前
z泽泽发布了新的文献求助10
2秒前
舒心思雁完成签到,获得积分10
3秒前
3秒前
Owen应助帅气胡萝卜采纳,获得10
4秒前
fmwang完成签到,获得积分10
5秒前
7秒前
7秒前
兴奋硬币发布了新的文献求助10
9秒前
10秒前
子车茗应助sci采纳,获得10
10秒前
忽忽发布了新的文献求助10
11秒前
FashionBoy应助z泽泽采纳,获得10
11秒前
阳光代丝完成签到 ,获得积分20
13秒前
jiajia完成签到,获得积分10
13秒前
15秒前
ALLUDO完成签到,获得积分10
15秒前
研友_nPoDRL发布了新的文献求助10
15秒前
murmure完成签到,获得积分10
18秒前
约修完成签到,获得积分10
18秒前
哈哈哈哈哈哈完成签到 ,获得积分10
19秒前
19秒前
狗蛋发布了新的文献求助10
21秒前
21秒前
帅气胡萝卜完成签到,获得积分10
22秒前
约修发布了新的文献求助10
22秒前
科目三应助Ly啦啦啦采纳,获得10
22秒前
24秒前
Qingwenxin发布了新的文献求助10
25秒前
25秒前
25秒前
wonder发布了新的文献求助10
25秒前
26秒前
贤惠的白开水完成签到 ,获得积分10
26秒前
26秒前
26秒前
27秒前
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244258
求助须知:如何正确求助?哪些是违规求助? 2887961
关于积分的说明 8250828
捐赠科研通 2556504
什么是DOI,文献DOI怎么找? 1384815
科研通“疑难数据库(出版商)”最低求助积分说明 649936
邀请新用户注册赠送积分活动 626021