STC-YOLO: Small Object Detection Network for Traffic Signs in Complex Environments

计算机科学 人工智能 目标检测 卷积神经网络 模式识别(心理学) 交通标志 判别式 交叉口(航空) 特征提取 特征(语言学) 计算机视觉 符号(数学) 数学 地理 哲学 数学分析 地图学 语言学
作者
Huaqing Lai,Liangyan Chen,Weihua Liu,Zi Ye,Sheng Ye
出处
期刊:Sensors [MDPI AG]
卷期号:23 (11): 5307-5307 被引量:8
标识
DOI:10.3390/s23115307
摘要

The detection of traffic signs is easily affected by changes in the weather, partial occlusion, and light intensity, which increases the number of potential safety hazards in practical applications of autonomous driving. To address this issue, a new traffic sign dataset, namely the enhanced Tsinghua-Tencent 100K (TT100K) dataset, was constructed, which includes the number of difficult samples generated using various data augmentation strategies such as fog, snow, noise, occlusion, and blur. Meanwhile, a small traffic sign detection network for complex environments based on the framework of YOLOv5 (STC-YOLO) was constructed to be suitable for complex scenes. In this network, the down-sampling multiple was adjusted, and a small object detection layer was adopted to obtain and transmit richer and more discriminative small object features. Then, a feature extraction module combining a convolutional neural network (CNN) and multi-head attention was designed to break the limitations of ordinary convolution extraction to obtain a larger receptive field. Finally, the normalized Gaussian Wasserstein distance (NWD) metric was introduced to make up for the sensitivity of the intersection over union (IoU) loss to the location deviation of tiny objects in the regression loss function. A more accurate size of the anchor boxes for small objects was achieved using the K-means++ clustering algorithm. Experiments on 45 types of sign detection results on the enhanced TT100K dataset showed that the STC-YOLO algorithm outperformed YOLOv5 by 9.3% in the mean average precision (mAP), and the performance of STC-YOLO was comparable with that of the state-of-the-art methods on the public TT100K dataset and CSUST Chinese Traffic Sign Detection Benchmark (CCTSDB2021) dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研顺利毕业顺利工作顺利完成签到,获得积分20
1秒前
隐形机器猫完成签到,获得积分20
1秒前
bjx完成签到,获得积分20
2秒前
2秒前
2秒前
Jasper应助西瓜采纳,获得10
2秒前
lily完成签到,获得积分10
3秒前
愉快冰淇淋完成签到,获得积分10
3秒前
3秒前
天真的和现实的电影家完成签到,获得积分10
4秒前
111完成签到,获得积分10
5秒前
大力的契完成签到,获得积分10
5秒前
5秒前
QQ完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
上官若男应助嘟嘟采纳,获得10
6秒前
晨雨完成签到,获得积分10
7秒前
张志顺完成签到,获得积分10
7秒前
tyhg完成签到,获得积分10
7秒前
无辜洋葱发布了新的文献求助10
7秒前
ape完成签到,获得积分20
7秒前
马保国123发布了新的文献求助10
8秒前
归海紫翠完成签到,获得积分10
8秒前
8秒前
岑夜南完成签到,获得积分10
8秒前
uniphoton完成签到,获得积分10
8秒前
FashionBoy应助zzznznnn采纳,获得10
8秒前
8秒前
哈哈发布了新的文献求助10
8秒前
成就的山水完成签到,获得积分10
9秒前
9秒前
9秒前
尚可完成签到 ,获得积分10
9秒前
赖道之发布了新的文献求助10
10秒前
完美世界应助yuan采纳,获得10
10秒前
丘比特应助bluer采纳,获得10
10秒前
好运来发布了新的文献求助10
10秒前
榕俊完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762