STC-YOLO: Small Object Detection Network for Traffic Signs in Complex Environments

计算机科学 人工智能 目标检测 卷积神经网络 模式识别(心理学) 交通标志 判别式 交叉口(航空) 特征提取 特征(语言学) 计算机视觉 符号(数学) 数学 地理 哲学 数学分析 地图学 语言学
作者
Huaqing Lai,Liangyan Chen,Weihua Liu,Zi Ye,Sheng Ye
出处
期刊:Sensors [MDPI AG]
卷期号:23 (11): 5307-5307 被引量:8
标识
DOI:10.3390/s23115307
摘要

The detection of traffic signs is easily affected by changes in the weather, partial occlusion, and light intensity, which increases the number of potential safety hazards in practical applications of autonomous driving. To address this issue, a new traffic sign dataset, namely the enhanced Tsinghua-Tencent 100K (TT100K) dataset, was constructed, which includes the number of difficult samples generated using various data augmentation strategies such as fog, snow, noise, occlusion, and blur. Meanwhile, a small traffic sign detection network for complex environments based on the framework of YOLOv5 (STC-YOLO) was constructed to be suitable for complex scenes. In this network, the down-sampling multiple was adjusted, and a small object detection layer was adopted to obtain and transmit richer and more discriminative small object features. Then, a feature extraction module combining a convolutional neural network (CNN) and multi-head attention was designed to break the limitations of ordinary convolution extraction to obtain a larger receptive field. Finally, the normalized Gaussian Wasserstein distance (NWD) metric was introduced to make up for the sensitivity of the intersection over union (IoU) loss to the location deviation of tiny objects in the regression loss function. A more accurate size of the anchor boxes for small objects was achieved using the K-means++ clustering algorithm. Experiments on 45 types of sign detection results on the enhanced TT100K dataset showed that the STC-YOLO algorithm outperformed YOLOv5 by 9.3% in the mean average precision (mAP), and the performance of STC-YOLO was comparable with that of the state-of-the-art methods on the public TT100K dataset and CSUST Chinese Traffic Sign Detection Benchmark (CCTSDB2021) dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺顺欣完成签到 ,获得积分10
刚刚
今后应助都是采纳,获得10
1秒前
1秒前
大个应助QYW采纳,获得10
2秒前
SciGPT应助嘟嘟采纳,获得10
3秒前
庚大屁发布了新的文献求助10
4秒前
严仕国完成签到,获得积分10
4秒前
5秒前
迷路世立完成签到,获得积分10
6秒前
赘婿应助早早采纳,获得10
7秒前
糊糊完成签到 ,获得积分20
7秒前
luoqin完成签到,获得积分10
8秒前
9秒前
庚大屁完成签到,获得积分10
9秒前
10秒前
复杂的扬完成签到,获得积分10
10秒前
Migue应助爱听歌凤灵采纳,获得10
10秒前
黎乐乐完成签到 ,获得积分10
10秒前
smile发布了新的文献求助10
11秒前
Forever完成签到,获得积分10
13秒前
zhangxiangwei完成签到,获得积分10
13秒前
fldud0发布了新的文献求助10
13秒前
14秒前
14秒前
贾宝玉完成签到,获得积分10
15秒前
sumugeng完成签到,获得积分10
15秒前
信仰完成签到,获得积分10
16秒前
平淡的文龙完成签到,获得积分10
17秒前
洪武发布了新的文献求助10
17秒前
喜欢月亮完成签到 ,获得积分10
17秒前
18秒前
科研通AI2S应助研友_nPol2L采纳,获得10
18秒前
19秒前
20秒前
无名花生完成签到 ,获得积分10
20秒前
21秒前
22秒前
贾宝玉发布了新的文献求助10
22秒前
我是哑巴完成签到,获得积分10
22秒前
小二郎应助LL采纳,获得10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137328
求助须知:如何正确求助?哪些是违规求助? 2788413
关于积分的说明 7786262
捐赠科研通 2444571
什么是DOI,文献DOI怎么找? 1299936
科研通“疑难数据库(出版商)”最低求助积分说明 625680
版权声明 601023