Extending Q -learning to continuous and mixed strategy games based on spatial reciprocity

维数之咒 计算机科学 机器学习 人工智能 动作(物理) 算法 数学 物理 量子力学
作者
Sheng Wang,Long Zhang,Yang Liu,Zhen Wang
出处
期刊:Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences [The Royal Society]
卷期号:479 (2274) 被引量:3
标识
DOI:10.1098/rspa.2022.0667
摘要

The discrete strategy game, in which agents can only choose cooperation or defection, has received lots of attention. However, this hypothesis seems implausible in the real world, where choices may be continuous or mixed. Furthermore, when applying Q -learning to continuous or mixed strategy games, one of the challenges is that the learning space grows drastically as the number of states and actions rises. So, in this article, we redesign the Q -learning method by considering the spatial reciprocity, in which agents simply interact with their four neighbours to get the reward and learn the action by taking neighbours’ strategy into account. As a result, the learning state and action space is transformed into a 5 × 5 table that stores the state and action of the focal agent and its four neighbours, avoiding the curse of dimensionality caused by a continuous or mixed strategy game. The numerical simulation results reveal the striking differences between the three classes of games. In detail, the discrete strategy game is more vulnerable to the setting of relevant parameters, whereas the other two strategy games are relatively stable. At the same time, in terms of promoting cooperation, a mixed strategy game is always better than a continuous one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助skbz采纳,获得10
1秒前
陈牛逼发布了新的文献求助30
1秒前
牛马完成签到,获得积分10
1秒前
2秒前
李健应助咕噜咕噜采纳,获得10
2秒前
爱喝水完成签到,获得积分10
2秒前
小白完成签到,获得积分10
2秒前
kyle完成签到 ,获得积分10
3秒前
宣依云发布了新的文献求助10
4秒前
我是张铁柱·完成签到,获得积分10
4秒前
爱吃麻辣烫应助awei采纳,获得10
5秒前
汉堡包应助小茗同学采纳,获得10
5秒前
张瑞彬发布了新的文献求助10
5秒前
王志蛟完成签到,获得积分10
5秒前
sssss发布了新的文献求助10
8秒前
调研昵称发布了新的文献求助80
8秒前
9秒前
11秒前
能不能发一篇完成签到,获得积分10
11秒前
Johnchill完成签到,获得积分10
11秒前
11秒前
starofjlu应助Ricochet采纳,获得20
12秒前
妩媚的书易完成签到 ,获得积分10
13秒前
向卉完成签到,获得积分10
13秒前
传奇3应助下雨不愁采纳,获得10
13秒前
麦子完成签到,获得积分10
14秒前
16秒前
852应助科研通管家采纳,获得10
16秒前
思源应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
爱喝水给爱喝水的求助进行了留言
17秒前
18秒前
我是老大应助sssss采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149540
求助须知:如何正确求助?哪些是违规求助? 2800615
关于积分的说明 7840805
捐赠科研通 2458144
什么是DOI,文献DOI怎么找? 1308295
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706